A Novel Approach to Characterizing the Corrosion Resistance of Super Duplex Stainless Steel Welds

CORROSION ◽  
2002 ◽  
Vol 58 (12) ◽  
pp. 1039-1048 ◽  
Author(s):  
A. Turnbull ◽  
P. E. Francis ◽  
M. P. Ryan ◽  
L. P. Orkney ◽  
A. J. Griffiths ◽  
...  
Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract ZERON 100 is a super duplex stainless steel which is manufactured to give a guaranteed corrosion performance by using an equation to control the chemistry in those elements which will determine the corrosion resistance of the material. Major usages in seawater applications, particularly offshore oil gathering systems. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: SS-555. Producer or source: Weir Material Services Ltd.


CORROSION ◽  
10.5006/3746 ◽  
2021 ◽  
Author(s):  
Víctor Vargas ◽  
Apolinar Albiter-Hernandez ◽  
Marco Dominguez Aguilar ◽  
Gerardo Altamirano-Guerrero ◽  
Cuahtemoc Maldonado

The effect of weld passes and single V grove designs, on the corrosion resistance of dissimilar welds of a low alloy steel and a super-duplex stainless steel, was studied in synthetic brine. Welds were manufactured in argon by gas tungsten arc (GTA) technique and joined by a high nickel wire of super-duplex stainless steel. Samples of weld regions were characterized by composition scans, electrochemical measurements, micro-hardness and scanning electron microscopy. In X52/ER2594, a transition region (TR) of grain boundaries type II and a band of martensite were formed. The base metal of X52 underwent the highest corrosion rate and localized corrosion occurred in the heat affected zone. Interface ER2594/25Cr7Ni and 25Cr7Ni showed the presence of pitting near intermetallics.


2010 ◽  
Vol 658 ◽  
pp. 380-383 ◽  
Author(s):  
Ying Han ◽  
De Ning Zou ◽  
Wei Zhang ◽  
Jun Hui Yu ◽  
Yuan Yuan Qiao

Specimens of 2507 super-duplex stainless steel aging at 850°C for 5 min, 15 min and 60 min were investigated to evaluate the pitting corrosion resistance in 3.5% NaCl solution at 30°C and 50°C. The results are correlated with the microstructures obtained with different aging time. The precipitation of σ phase remarkably decreases the pitting corrosion resistance of the steel and the specimen aged for 60 min presents the lowest pitting potential at both 30°C and 50°C. With increasing the ambient temperature from 30°C to 50°C, the pitting potential exhibits a reduction tendency, while this tendency is less obviously in enhancing the ambient temperature than in extending the isothermal aging duration from 5 to 60 min. SEM analysis shows that the surrounding regions of σ phase are the preferable sites for the formation of corrosion pits which grew up subsequently. This may be attributed to the lower content of corrosion resistance elements in these regions formatted with σ phase precipitation.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Shuang Liu ◽  
Chaohua Yue ◽  
Xi Chen ◽  
Qiuhua Zhu ◽  
Yiyou Tu

The pitting corrosion resistance of S32750 super duplex stainless steel, annealing treated at temperatures of 950–1200 °C for 20–60 min, was investigated using potentiodynamic polarization tests. The results show that the volume fractions of ferrite in the S32750 duplex stainless steel increased from 48.9% to 68.4% as annealing temperatures increased from 950 to 1200 °C. The pitting potential of the sample increased first and then decreased from an annealing temperature of 950 to 1050 °C, and the highest pitting potential was observed after annealing at 1050 °C for 35 min. The pitting corrosion resistance of S32750 stainless steel is due to the combination of pitting resistance equivalent number (PREN) value, phase fraction and grain boundary area fraction, and the imbalance of corrosion potential.


2010 ◽  
Vol 139-141 ◽  
pp. 670-676
Author(s):  
Hong Liang Xiang ◽  
Dong Liu ◽  
Wei Lin Huang ◽  
Fu Shan He

SAF2906 is a new kind of super duplex stainless steel, and more corrosion-resistant and strong than SAF2507, suitable to be used in the low temperature and corrosion conditions. In order to prevent the occurrence of microstructure changes resulting in the property deterioration, in the general, the castings made for SAF2906 should be cryogenically treated before they are used in the ultra low conditions. N is an alloying element, usually added to stainless steels to increase the material properties. So, In this paper, the effects of N content on microstructure, mechanical and corrosion resistance properties of SAF2906 casting super duplex stainless steel (SDSS) after cryogenic treatment were studied by means of Optical Microscope(OM), X-ray Diffraction(XRD) and electrochemical workstation. The results indicate that N can increase the amount of γ phase according to a linear relationship of Φ(γ)=99.4×w(N)+6.16. When N content is low or medial, γ phase can precipitate from ferrite. When N content is high, γ phase does not precipitate from ferrite and is converted directly from ferrite and austenite grain boundaries. The higher N content, the greater tensile strength and elongation, the better corrosion resistance. Compared with solution state, cryogenic treatment can improve corrosion resistance.


2021 ◽  
Vol 24 (6) ◽  
Author(s):  
Ferdinando Marco Rodrigues Borges ◽  
Wênio Fhará Alencar Borges ◽  
Rafaela Luiz Pereira Santos ◽  
Valdemar Silva Leal ◽  
José Ribeiro dos Santos Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document