In Situ Assessment of Pitting Corrosion and Its Inhibition Using a Localized Corrosion Monitoring Technique

CORROSION ◽  
2010 ◽  
Vol 66 (6) ◽  
pp. 065003-065003-18 ◽  
Author(s):  
J. J. Moloney ◽  
W. Y. Mok ◽  
C. M. Menendez
2019 ◽  
Vol 9 (4) ◽  
pp. 706 ◽  
Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and corrosion morphology in-situ capturing using an optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with a scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After completion of the signal processing, including pre-treatment, shape preserving interpolation, and denoising, for raw AE waveforms, three types of AE signals were classified in the correlation diagrams of the new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.


Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and the corrosion morphology in-situ capturing using optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After the performing of signal processing including pre-treatment, shape preserving interpolation and denoising for raw AE waveforms, three types of AE signals can be classified in the correlation diagrams of new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.


2017 ◽  
Vol 751 ◽  
pp. 107-112
Author(s):  
Wongpat Banthukul ◽  
Namurata Sathirachinda Palsson ◽  
Ekkarut Viyanit ◽  
Aphichart Rodchanarowan

Pitting corrosion caused by wet-dry cycles under corrosive media droplet is one of the key concerns for passive film of metallic materials, particularly stainless steels and aluminum alloys, exposed to atmosphere during service. In this context, the formation of corrosion can lead to high investment cost dealing with corrosion mitigation strategy, e.g. materials selection, electrochemical corrosion control, etc. Based on materials selection perspectives, it is very necessary to have proper understanding of localized corrosion behaviors of metallic materials under solution droplet. Therefore, the present study aims to develop a methodology for pitting corrosion monitoring that can be suitably used for extending better understanding on corrosion phenomena occurring under wet-dry cycles of droplet. A special liquid handling apparatus controlled by Arduino software was constructed and used for generating NaCl solution droplet at given dimension on the surface of stainless steel specimens based on Pendant drop principle. This was recognized as wet cycle. During dry cycle, such NaCl solution droplet was naturally dried off in various conditions of relative humidity. Pitting initiation was observed through a high-resolution CCD camera. Droplet morphology and evaporation time were evaluated at the temperature of 27°C and relative humidity of 10% and 60%. The research results revealed that pitting corrosion started at 1st cycle without rust formation. Afterwards, the rust formation was clearly noticed when testing cycles of 15 were exceeded.


2021 ◽  
Author(s):  
Islam M M. El-Sewify ◽  
Mostafa M.H. Khalil

In this report, we employ simple, fast and in-situ assessment method for sensing and uptake of copper in wastewater. Monitoring and uptake of copper ions concentration with a highly selective,...


Sign in / Sign up

Export Citation Format

Share Document