scholarly journals In-Situ Monitoring and Analysis of the Pitting Corrosion of Carbon Steel by Acoustic Emission

2019 ◽  
Vol 9 (4) ◽  
pp. 706 ◽  
Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and corrosion morphology in-situ capturing using an optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with a scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After completion of the signal processing, including pre-treatment, shape preserving interpolation, and denoising, for raw AE waveforms, three types of AE signals were classified in the correlation diagrams of the new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.

Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and the corrosion morphology in-situ capturing using optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After the performing of signal processing including pre-treatment, shape preserving interpolation and denoising for raw AE waveforms, three types of AE signals can be classified in the correlation diagrams of new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.


2013 ◽  
Vol 668 ◽  
pp. 880-884 ◽  
Author(s):  
Jun Xiu Shi ◽  
Jian Hua Liu

Galvanic corrosion behavior of Ti-1023 titanium alloy coupled to LY12 aluminum alloy was investigated in 3.5% NaCl solution. Particular attention was given to the effect of anodized coatings on corrosion behaviors of Ti-1023/LY12 galvanic couple. Galvanic test was conducted on the following couples: Ti-1023/LY12, Ti-1023/anodized LY12 and anodized Ti-1023/anodized LY12, respectively. Corrosion properties including open circuit potential (Eoc) of each material, galvanic corrosion potential (Eg) and galvanic corrosion current (Ig) of the couples were monitored. Corrosion morphology was observed by optical microscope (OM) and corrosion mechanisms were analyzed and discussed. It was showed that anodized coatings significantly decreased Eg and Īg of the couples and provide effective protection of the anode from suffering corrosion attack. Only slight localized corrosion was detected on anodized LY12 alloy in the two anodized couples and the LY12 in anodized Ti-1023/anodized LY12 couple was found to be least susceptible to galvanic corrosion. The LY12 alloy in the bare couple: Ti-1023/LY12, was found to be highly susceptible to galvanic corrosion and suffered severe uniform and localized corrosion attack


CORROSION ◽  
10.5006/4000 ◽  
2021 ◽  
Author(s):  
Ali Ashrafriahi ◽  
Anatolie Carcea ◽  
Roger Newman

This work is aimed at improving the understanding of the localized corrosion of carbon steel in ethanolic solutions. The role of ethanol dehydration, chloride, and oxygen level in the pitting behaviour of carbon steel in ethanolic environments in the presence of supporting electrolytes was investigated. Open Circuit Potential measurement, Cyclic Potentiodynamic Polarization and Potentiostatic testing were conducted on specimens exposed to ethanolic environments prepared from pure dehydrated ethanol to study the pitting behaviour of carbon steel. Corrosion and passivation potentials significantly reduce due to the change in the cathodic reaction and the decrease in passivation kinetics under de-aerated conditions. SEM and EDX examination indicated that no pitting corrosion is observed without chlorides, and chloride significantly destabilizes the surface film resulting in decreases of both corrosion potential and passivation potential. A decrease in the dissolved oxygen in the solution reduces but does not eliminate the pitting susceptibility. Iron oxide is identified as the significant corrosion product at different water and oxygen content. Therefore, ethanol aeration can be a proper method to increase pitting corrosion resistance in ethanolic solutions.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-33
Author(s):  
Luigi Calabrese ◽  
Edoardo Proverbio

The complex nature of the damage evolution in stress corrosion cracking (SCC) leads to explore for new investigation technologies in order to better identify the mechanisms that supervise the initiation and evolution of the damage as well to provide an improvement of knowledge on this critical localized corrosion form during time. Research activities concerning the use of acoustic emission (AE) technique to assess SCC has acquiring considerably relevance in recent decades. The non-invasiveness and the possibility to provide a continuous in situ monitoring of structures and components make this non-destructive technique clearly promising in the field of structural health monitoring. In this concern, this paper aims to be a focused overview on the evaluation of SCC phenomena by AE technique. The main topic of this review is centered on the approaches that can be used in elaborating AE data to better discriminate the mechanisms that contribute to damage propagation in SCC conditions. Based on available literature, investigation approaches assessing AE waveform parameters were classified, evidencing, furthermore, the identified mechanisms that synergistically take place during the material degradation. Eventually, a brief summary and a future trend evaluation was also reported.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5877
Author(s):  
Dessalegn Ahmed Yeshanew ◽  
Moera Gutu Jiru ◽  
Gulam Mohammed Sayeed Ahmed ◽  
Irfan Anjum Badruddin ◽  
Manzoore Elahi M. Soudagar ◽  
...  

Water pipe surface deterioration is the result of continuous electrochemical reactions attacking the surface due to the interaction of the pipe surface with environments through the time function. The study presents corrosion characterization at the surface and sub-surface of damaged ductile iron pipe (DIP) and galvanized steel (GS) pipes which served for more than 40 and 20 years, respectively. The samples were obtained from Addis Ababa city water distribution system for the analysis of corrosion morphology patterns at different surface layers. Mountains 8.2 surface analysis software was utilized based on the ISO 25178-2 watershed segmentation method to investigate corrosion features of damaged pipe surface and to evaluate maximum pit depth, area, and volume in-situ condition. Based on the analysis maximum values of pit depth, area and volume were 380 μ m, 4000 μm2, and 200,000 μm3, respectively, after 25% loss of the original 8 mm thickness of DIP. Similarly, the pit depth of the GS pipe was 390 μm whereas the maximum pit area and volume are 4000 μm2 and 16,000 μm3, respectively. In addition, characterizations of new pipes were evaluated to study microstructures by using an optical microscope (OM), and a scanning electron microscope (SEM) was used to analyze corrosion morphologies. Based on the SEM analysis, cracks were observed at the sub-surface layer of the pipes. The results show that uniform corrosion attacked the external pipe surface whereas pitting corrosion damaged the subsurface of pipes. The output of this study will be utilized by water suppliers and industries to investigate corrosion phenomena at any damage stage.


Sign in / Sign up

Export Citation Format

Share Document