scholarly journals Stress Corrosion Cracking of Alloy 600 Using the Constant Strain Rate Test

CORROSION ◽  
1981 ◽  
Vol 37 (10) ◽  
pp. 597-607 ◽  
Author(s):  
T. S. Bulischeck ◽  
D. Van Rooyen

Abstract Nuclear grade production tubing of Alloy 600 was evaluated for stress corrosion cracking (SCC) susceptibility in high purity water at 365, 345, 325, and 290 C. Reverse tube U-bend specimens provided crack initiation data and constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage. Initial results indicate that a linear extrapolation of data received from high temperature tests can be used to predict the service life of steam generator tubing that has been plastically deformed or is continually deforming by “denting.”

CORROSION ◽  
1986 ◽  
Vol 42 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Y. S. Garud ◽  
A. R. McIlree

Abstract A logical approach to quantitative modeling of intergranular stress corrosion cracking (IGSCC) is presented. The approach is based on the supposition (supported partly by experimental and field observations, and by a related plausible underlying mechanism) that strain rate is a key variable. The approach is illustrated for the specific case of NiCrFe Alloy 600 in high-purity water. Model parameters are determined based on the constant stress IGSCC data (between 290 and 365 C) assuming a power law relation between the damage and the nominal strain rate. The model may be interpreted in terms of a film rupture mechanism of the corrosion process. The related mechanistic considerations are examined for the specific case. Resulting calculations and stress as well as temperature dependence are shown to be in good agreement with the data. More data are needed for further verification under specific conditions of interest.


2017 ◽  
Vol 62 (2) ◽  
pp. 557-562 ◽  
Author(s):  
M. Sozańska ◽  
A. Mościcki ◽  
B. Chmiela

Abstract The article shows that the use of quantitative fracture description may lead to significant progress in research on the phenomenon of stress corrosion cracking of the WE43 magnesium alloy. Tests were carried out on samples in air, and after hydrogenation in 0.1 M Na2SO4 with cathodic polarization. Fracture surfaces were analyzed after different variants of the Slow Strain Rate Test. It was demonstrated that the parameters for quantitative evaluation of fracture surface microcracks can be closely linked with the susceptibility of the WE43 magnesium alloy operating under complex state of the mechanical load in corrosive environments. The final result of the study was the determination of the quantitative relationship between Slow Strain Rate Test parameters, the mechanical properties, and the parameters of the quantitative evaluation of fracture surface (microcracks).


2015 ◽  
Vol 766-767 ◽  
pp. 733-738
Author(s):  
A.V. Santhana Babu ◽  
P.K. Giridharan ◽  
A. Venugopal ◽  
P. Ramesh Narayanan ◽  
S.V.S. Narayana Murty

Limitation in penetration depth is a concern in conventional TIG welding. To improve penetration capability of TIG process, Flux Bounded TIG (FBTIG) has been developed. Stress corrosion cracking (SCC) behavior of FBTIG welds of aluminum alloy AA 2219 T87 is evaluated in 3.5 weight percent NaCl solution using Slow Strain Rate Test technique (SSRT) as per ASTM G129. SCC index defined as the ratio of the elongation of tensile tested specimen in NaCl to that of air is taken as a measure of the susceptibility to cracking. Based on the SCC index, it is concluded that the SCC resistance of FBTIG joints are good and comparable to that of conventional TIG welds.


Sign in / Sign up

Export Citation Format

Share Document