Effect of Grain Size on the Anodic Dissolution of Lean Duplex UNS S32202 Austenitic-Ferritic Stainless Steel

CORROSION ◽  
10.5006/3218 ◽  
2019 ◽  
Vol 75 (12) ◽  
pp. 1450-1460
Author(s):  
Charles David ◽  
Fiona Ruel ◽  
Florent Krajcarz ◽  
Clément Boissy ◽  
Saghi Saedlou ◽  
...  

The effect of grain size on the anodic dissolution of lean duplex UNS S32202 dual-phase austenitic-ferritic stainless steel was evaluated. Grain coarsening was achieved by heat treatment, and grain size and grain boundary densities determined by automatic image analysis after etching. Potentiodynamic electrochemical testing in acidic chloride medium allowed isolating the anodic dissolution behavior of the crystallographic phases of the material. A relationship between grain boundary density (for grain sizes in the micrometer range) and dissolution rate has been found, showing that reducing grain size enhances active corrosion rates in environments that promote active behavior. This leads to new possibilities of industrial adjustment of the corrosion behavior of duplex stainless steels via grain size control.

2003 ◽  
Vol 89 (5) ◽  
pp. 616-622 ◽  
Author(s):  
Koji TAKANO ◽  
Ryuji NAKAO ◽  
Shigeo FUKUMOTO ◽  
Toshihiro TSUCHIYAMA ◽  
Setsuo TAKAKI

2013 ◽  
Vol 794 ◽  
pp. 135-158 ◽  
Author(s):  
G. Balachandran ◽  
V. Balasubramanian

Stainless steel bar and wire products that cater to the high technology application in defence, nuclear, aerospace, oil field and chemical engineering is an area poised for rapid growth in India. The advancing capabilities of alloy steel plants in India have enabled mastering of techniques to make a wide variety of stainless steels. However, there are increasing challenges to meet the advanced property requirements, which call for a basic understanding on the structure property relationship that are influenced by appropriate alloy design and down-stream processing. The special steel industry cater to a wide variety of stainless steels namely ferritic, martensitic, austenitic and precipitation hardenable categories for meeting requirements of high technology. One of the process for making the primary stainless steels is Vacuum Oxygen Decarburisation process. For advanced applications, the primary melted steel is again secondary refined using electroslagremelting for the management of solidification structures and control of inclusions. In the austenitic grades, the hot forged and hot rolled heat treated steels, careful choice of chemistry controls the delta ferrite content and ensures uniformity of the grain size in the product during deformation processing and heat treatment. In the martensitic stainless steel grades, focus is given to delta ferrite, grain size control and appropriate tempering treatment. In the precipitation hardenable steels grades the aging reactions and hot deformation range have to be optimised for deriving specified mechanical properties. Special grades are produced using non ESR and ESR routes to meet high temperature applications such as turbine blades and bolting. In these grades control of delta ferrite content, carbides, carbo-nitrides in the matrix has a deep influence on the mechanical and sub zero fracture properties. In the ferritic stainless steel grade grain size control is critical. The presentation would bring forth the correlation between the alloy design, processing and properties that were achieved in the products mentioned above to meet some of the challenging requirements.


Author(s):  
Ernest L. Hall ◽  
Lee E. Rumaner ◽  
Mark G. Benz

The intermetallic compound Nb3Sn is a type-II superconductor of interest because it has high values of critical current density Jc in high magnetic fields. One method of forming this compound involves diffusion of Sn into Nb foil containing small amounts of Zr and O. In order to maintain high values of Jc, it is important to keep the grain size in the Nb3Sn as small as possible, since the grain boundaries act as flux-pinning sites. It has been known for many years that Zr and O were essential to grain size control in this process. In previous work, we have shown that (a) the Sn is transported to the Nb3Sn/Nb interface by liquid diffusion along grain boundaries; (b) the Zr and O form small ZrO2 particles in the Nb3Sn grains; and (c) many very small Nb3Sn grains nucleate from a single Nb grain at the reaction interface. In this paper we report the results of detailed studies of the Nb3Sn/Nb3Sn, Nb3Sn/Nb, and Nb3Sn/ZrO2 interfaces.


2021 ◽  
pp. 138770
Author(s):  
Linlin Guan ◽  
Leiming Yu ◽  
Lijuan Wu ◽  
Shuyu Zhang ◽  
Yuting Lin ◽  
...  

1995 ◽  
Vol 102 (12) ◽  
pp. 5082-5087 ◽  
Author(s):  
Thomas Palberg ◽  
Wolfgang Mönch ◽  
Jürgen Schwarz ◽  
Paul Leiderer

2017 ◽  
Vol 544 ◽  
pp. 306-311 ◽  
Author(s):  
Shunsuke Tanaka ◽  
Kenta Okubo ◽  
Koji Kida ◽  
Miki Sugita ◽  
Takahiko Takewaki

Sign in / Sign up

Export Citation Format

Share Document