scholarly journals Theoretical Investigation of the Reaction of Ce+with Water in the Gas Phase: Density Functional Theory Calculations

2013 ◽  
Vol 34 (5) ◽  
pp. 1551-1554 ◽  
Author(s):  
Kiryong Hong ◽  
Joonghan Kim ◽  
Tae Kyu Kim
2019 ◽  
Vol 25 (1) ◽  
pp. 30-43 ◽  
Author(s):  
Qiuyan Jin ◽  
Jiaye Li ◽  
Alireza Ariafard ◽  
Allan J Canty ◽  
Richard AJ O’Hair

Gas-phase ion trap mass spectrometry experiments and density functional theory calculations have been used to examine the routes to the formation of the 1,8-naphthyridine (napy) ligated geminally dimetallated phenyl complexes [(napy)Cu2(Ph)]+, [(napy)Ag2(Ph)]+ and [(napy)CuAg(Ph)]+ via extrusion of CO2 or SO2 under collision-induced dissociation conditions from their corresponding precursor complexes [(napy)Cu2(O2CPh)]+, [(napy)Ag2(O2CPh)]+, [(napy)CuAg(O2CPh)]+ and [(napy)Cu2(O2SPh)]+, [(napy)Ag2(O2SPh)]+, [(napy)CuAg(O2SPh)]+. Desulfination was found to be more facile than decarboxylation. Density functional theory calculations reveal that extrusion proceeds via two transition states: TS1 enables isomerization of the O, O-bridged benzoate to its O-bound form; TS2 involves extrusion of CO2 or SO2 with the concomitant formation of the organometallic cation and has the highest barrier. Of all the organometallic cations, only [(napy)Cu2(Ph)]+ reacts with water via hydrolysis to give [(napy)Cu2(OH)]+, consistent with density functional theory calculations which show that hydrolysis proceeds via the initial formation of the adduct [(napy)Cu2(Ph)(H2O)]+ which then proceeds via TS3 in which the coordinated H2O is deprotonated by the coordinated phenyl anion to give the product complex [(napy)Cu2(OH)(C6H6)]+, which then loses benzene.


2020 ◽  
Vol 49 (40) ◽  
pp. 14081-14087 ◽  
Author(s):  
Hai-Yan Zhou ◽  
Ming Wang ◽  
Yong-Qi Ding ◽  
Jia-Bi Ma

The thermal gas-phase reactions of Nb2BN2− cluster anions with carbon dioxide have been explored by using the art of time-of-flight mass spectrometry and density functional theory calculations.


2015 ◽  
Vol 11 ◽  
pp. 1340-1351 ◽  
Author(s):  
Willem K Offermans ◽  
Claudia Bizzarri ◽  
Walter Leitner ◽  
Thomas E Müller

Exploiting carbon dioxide as co-monomer with epoxides in the production of polycarbonates is economically highly attractive. More effective catalysts for this reaction are intensively being sought. To promote better understanding of the catalytic pathways, this study uses density functional theory calculations to elucidate the reaction step of CO2 insertion into cobalt(III)–alkoxide bonds, which is also the central step of metal catalysed carboxylation reactions. It was found that CO2 insertion into the cobalt(III)–alkoxide bond of [(2-hydroxyethoxy)CoIII(salen)(L)] complexes (salen = N,N”-bis(salicyliden-1,6-diaminophenyl)) is exothermic, whereby the exothermicity depends on the trans-ligand L. The more electron-donating this ligand is, the more exothermic the insertion step is. Interestingly, we found that the activation barrier decreases with increasing exothermicity of the CO2 insertion. Hereby, a linear Brønsted–Evans–Polanyi relationship was found between the activation energy and the reaction energy.


Sign in / Sign up

Export Citation Format

Share Document