Nb2BN2− cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands

2020 ◽  
Vol 49 (40) ◽  
pp. 14081-14087 ◽  
Author(s):  
Hai-Yan Zhou ◽  
Ming Wang ◽  
Yong-Qi Ding ◽  
Jia-Bi Ma

The thermal gas-phase reactions of Nb2BN2− cluster anions with carbon dioxide have been explored by using the art of time-of-flight mass spectrometry and density functional theory calculations.

2019 ◽  
Vol 25 (1) ◽  
pp. 30-43 ◽  
Author(s):  
Qiuyan Jin ◽  
Jiaye Li ◽  
Alireza Ariafard ◽  
Allan J Canty ◽  
Richard AJ O’Hair

Gas-phase ion trap mass spectrometry experiments and density functional theory calculations have been used to examine the routes to the formation of the 1,8-naphthyridine (napy) ligated geminally dimetallated phenyl complexes [(napy)Cu2(Ph)]+, [(napy)Ag2(Ph)]+ and [(napy)CuAg(Ph)]+ via extrusion of CO2 or SO2 under collision-induced dissociation conditions from their corresponding precursor complexes [(napy)Cu2(O2CPh)]+, [(napy)Ag2(O2CPh)]+, [(napy)CuAg(O2CPh)]+ and [(napy)Cu2(O2SPh)]+, [(napy)Ag2(O2SPh)]+, [(napy)CuAg(O2SPh)]+. Desulfination was found to be more facile than decarboxylation. Density functional theory calculations reveal that extrusion proceeds via two transition states: TS1 enables isomerization of the O, O-bridged benzoate to its O-bound form; TS2 involves extrusion of CO2 or SO2 with the concomitant formation of the organometallic cation and has the highest barrier. Of all the organometallic cations, only [(napy)Cu2(Ph)]+ reacts with water via hydrolysis to give [(napy)Cu2(OH)]+, consistent with density functional theory calculations which show that hydrolysis proceeds via the initial formation of the adduct [(napy)Cu2(Ph)(H2O)]+ which then proceeds via TS3 in which the coordinated H2O is deprotonated by the coordinated phenyl anion to give the product complex [(napy)Cu2(OH)(C6H6)]+, which then loses benzene.


2012 ◽  
Vol 65 (12) ◽  
pp. 1655 ◽  
Author(s):  
Pascal Gerbaux ◽  
Curt Wentrup

The nature of the m/z 104 ions formed by loss of CO2 or Ph-O-NCO from the molecular ions of phthalic anhydride, N-phenoxyphthalimide, and N-phenoxyisophthalimide was investigated by means of ion/molecule reactions with acetone. This allows a clear-cut differentiation of the so-obtained ions from the isomeric molecular ions of cyclopentadienylideneketene. The different intrinsic chemical reactivities of ionized cyclopentadienylideneketene and its distonoid isomer towards neutral acetone were investigated on a large-scale hybrid mass spectrometer and confirmed by density functional theory calculations.


2016 ◽  
Vol 18 (36) ◽  
pp. 25010-25021 ◽  
Author(s):  
Chung Man Ip ◽  
Alessandro Troisi

Three reaction pathways for the photocatalytic reduction of carbon dioxide to methane are investigated with density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document