scholarly journals Supercooled Liquid, Glass and Glass Transition

2009 ◽  
Vol 53 (2) ◽  
pp. 99-110
Author(s):  
Hack-Jin Kim
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


2003 ◽  
Vol 217 (7) ◽  
pp. 803-816 ◽  
Author(s):  
Makoto Yao ◽  
Hirotaka Kohno ◽  
Hiroaki Kajikawa

AbstractIt is well known that the liquid dynamics slows down on approaching the liquid-gas critical point or the liquid-glass transition. Recently we have found by the sound attenuation measurements that the metal-nonmetal (M-NM) transition also induces slow dynamics. In the M-NM transition range of expanded liquid Hg, we have observed anomalous increase in the sound attenuation due to the structural relaxation process. Assuming a simple Debye-type relaxation, we have estimated that the relaxation time should be of the order of nanoseconds and revealed that the relaxation strength has a broad maximum in the M-NM transition range. Moreover, two types of anomalies have been observed also in the semiconductor-metal (S-M) transition range of liquid Te-Se mixtures. We present the recent experimental results of the sound attenuation measurements and discuss briefly the mechanisms of the slow dynamics in the metal-nonmetal transition range of liquids.


1996 ◽  
Vol 455 ◽  
Author(s):  
Ralf Busch ◽  
Andreas Masuhr ◽  
Eric Bakke ◽  
William L. Johnson

ABSTRACTThe viscosities of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 and the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass forming liquids was determined from the melting point down to the glass transition in the entire temperature range of the supercooled liquid. The temperature dependence of the viscosity in the supercooled liquid obeys the Vogel-Fulcher-Tammann (VFT) relation. The fragility index D is about 20 for both alloys and the ratio between glass transition temperature and VFT temperature is found to be 1.5. A comparison with other glass forming systems shows that these bulk metallic glass formers are strong liquids comparable to sodium silicate glass. Furthermore, they are the strongest among metallic glass forming liquids. This behavior is a main contributing factor to the glass forming ability since it implicates a higher viscosity from the melting point down to the glass transition compared to other metallic liquids. Thus, the kinetics in the supercooled liquid is sluggish and yields a low critical cooling rate for glass formation. The relaxation behavior in the glass transition region of the alloys is consistent with their strong glassy nature as reflected by a stretching exponent that is close to 0.8. The microscopic origin of the strong liquid behavior of bulk metallic glass formers is discussed.


Sign in / Sign up

Export Citation Format

Share Document