scholarly journals Migration of Aqueous Fluid in the Mantle Wedge and Formation of the Volcanic Front in Subduction Zones.

2000 ◽  
Vol 109 (4) ◽  
pp. 590-599
Author(s):  
Kenji MIBE ◽  
Toshitsugu FUJII ◽  
Atsushi YASUDA
Nature ◽  
10.1038/45762 ◽  
1999 ◽  
Vol 401 (6750) ◽  
pp. 259-262 ◽  
Author(s):  
Kenji Mibe ◽  
Toshitsugu Fujii ◽  
Atsushi Yasuda

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yongsheng Huang ◽  
Takayuki Nakatani ◽  
Michihiko Nakamura ◽  
Catherine McCammon

AbstractRecently, high electrical conductors have been detected beneath some fore-arcs and are believed to store voluminous slab-derived fluids. This implies that the for-arc mantle wedge is permeable for aqueous fluids. Here, we precisely determine the dihedral (wetting) angle in an olivine–NaCl–H2O system at fore-arc mantle conditions to assess the effect of salinity of subduction-zone fluids on the fluid connectivity. We find that NaCl significantly decreases the dihedral angle to below 60° in all investigated conditions at concentrations above 5 wt% and, importantly, even at 1 wt% at 2 GPa. Our results show that slab-released fluid forms an interconnected network at relatively shallow depths of ~80 km and can partly reach the fore-arc crust without causing wet-melting and serpentinization of the mantle. Fluid transport through this permeable window of mantle wedge accounts for the location of the high electrical conductivity anomalies detected in fore-arc regions.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 565 ◽  
Author(s):  
Véronique Le Roux ◽  
Yan Liang

The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle.


Subduction zones represent major sites of chemical fractionation within the Earth. Element pairs which behave coherently during normal mantle melting may become strongly decoupled from one another during the slab dehydration processes and during hydrous melting conditions in the slab and in the mantle wedge. This results in the large ion lithophile elements (e.g. K, Rb, Th, U, Ba) and the light rare earth elements being transferred from the slab to the mantle wedge, and being concentrated within the mantle wedge by hydrous fluids, stabilized in hydrous phases such as hornblende and phlogopite, from where they are eventually extracted as magmas and contribute to growth of the continental crust. High-field strength elements (e.g. Nb, Ta, Ti, P, Zr) are insoluble in hydrous fluids and relatively insoluble in hydrous melts, and remain in the subducted slab and the adjacent parts of the mantle which are dragged down and contribute to the source for ocean island basalts. The required element fractionations result from interaction between specific mineral phases (hornblende, phlogopite, rutile, sphene, etc.) and hydrous fluids. In present day subduction magmatism the mantle wedge contributes dominantly to the chemical budget, and there is a requirement for significant convection to maintain the element flux. In the Precambrian, melting of subducted ocean crust may have been easier, providing an enhanced slab contribution to continental growth.


2020 ◽  
Author(s):  
Carla Tiraboschi ◽  
Carmen Sanchez-Valle

<p>In subduction zones, aqueous fluids derived from devolatilization processes of the oceanic lithosphere and its sedimentary cover, are major vectors of mass transfer from the slab to the mantle wedge and contribute to the recycling of elements and to their geochemical cycles. In this setting, assessing the mobility of redox sensitive elements, such as iron, can provide useful insights on the oxygen fugacity conditions of slab-derived fluid. However, the amount of iron mobilized by deep aqueous fluids and melts, is still poorly constrained.</p><p>We experimentally investigate the solubility of magnetite-hematite assemblages in water-saturated haplogranitic liquids, which represent the felsic melt produced by subducted eclogites. Experiments were conducted at 1 GPa and temperature ranging from 700 to 900 °C employing a piston cylinder apparatus. Single gold capsules were loaded with natural hematite, magnetite and synthetic haplogranite (Na<sub>0.56</sub>K<sub>0.38</sub>Al<sub>0.95</sub>Si<sub>5.19</sub>O<sub>12.2</sub>). Two sets of experiments were conducted: one with H<sub>2</sub>O-only fluids and the second one adding a 1.5 m H<sub>2</sub>O–NaCl solution. The capsule was kept frozen during welding to ensure no water loss. After quench, the presence of H<sub>2</sub>O in the quenched haplogranite glass was checked by Raman spectroscopy, while major elements were determined by microprobe analysis.</p><p>Preliminary results indicate that a significant amount of Fe is released from magnetite and hematite in hydrous melts, even at relatively low-pressure conditions. At 1 GPa the FeO<sub>tot</sub> quenched in the haplogranite glass ranges from 0.60 wt% at 700 °C, to 1.87 wt% at 900 °C. In the presence of NaCl, we observed an increase in the amount of iron quenched in the glass (e.g., at 800 °C from 1.04 wt% to 1.56 wt% of FeO<sub>tot</sub>). Our results suggest that hydrous melts can effectively mobilize iron even at low-pressure conditions and represent a valid agent for the cycling of iron from the subducting slab to the mantle wedge.</p>


2016 ◽  
Vol 436 ◽  
pp. 93-107 ◽  
Author(s):  
Yamirka Rojas-Agramonte ◽  
Antonio Garcia-Casco ◽  
Anthony Kemp ◽  
Alfred Kröner ◽  
Joaquín A. Proenza ◽  
...  

2019 ◽  
Vol 27 (5) ◽  
pp. 503-524
Author(s):  
A. L. Perchuk ◽  
A A. Serdyuk ◽  
N. G. Zinovievа

We present the results of analogue experiments carried out in a piston–cylinder apparatus at 750–900°C and 2.9 GPa aimed to simulate metasomatic transformation of the fertile mantle caused by fluids and melts released from the subducting sediment. A synthetic H2O- and CO2-bearing mixture that corresponds to the average subducting sediment (GLOSS, Plank, Langmuir, 1998) and mineral fractions of natural lherzolite (analogue of a mantle wedge) were used as starting materials. Experiments demonstrate that the mineral growth in capsules is controlled by ascending fluid and hydrous melt (from 850°C) flows. Migration of the liquids and dissolved components develops three horizontal zones in the sedimentary layer with different mineral parageneses that slightly changed from run to run. In the general case, however, the contents of omphacite and garnet increase towards the upper boundary of the layer. Magnesite and omphacite (± garnet ± melt ± kyanite ± phengite) are widespread in the central zone of the sedimentary layer, whereas SiO2 polymorph (± kyanite ± phengite ± biotite ± omphacite ± melt) occurs in the lower zone. Clinopyroxene disappears at the base of lherzolite layer and the initial olivine is partially replaced by orthopyroxene (± magnesite) in all experiments. In addition, talc is formed in this zone at 750°C, whereas melt appears at 850°C. In the remaining volume of the lherzolite layer, metasomatic transformations affect only grain boundaries where orthopyroxene (± melt ± carbonate) is developed. The described transformations are mainly related to a pervasive flow of liquids. Mineral growth in the narrow wall sides of the capsules is probably caused by a focused flow: omphacite grows up in the sedimentary layer, and talc or omphacite with the melt grow up in the lherzolite layer. Experiments show that metasomatism of peridotite related to a subducting sediment, unlike the metasomatism related to metabasites, does not lead to the formation of garnet-bearing paragenesis. In addition, uprising liquid flows (fluid, melt) do not remove significant amounts of carbon from the metasedimentary layer to the peridotite layer. It is assumed that either more powerful fluxes of aqueous fluid or migration of carbonate-bearing rocks in subduction melanges are necessary for more efficient transfer of crustal carbon from metasediments to a mantle in subduction zones.


2020 ◽  
Vol 105 (8) ◽  
pp. 1191-1203
Author(s):  
Yanfei Zhang ◽  
Xuran Liang ◽  
Chao Wang ◽  
Zhenmin Jin ◽  
Lüyun Zhu ◽  
...  

Abstract Sedimentary diapirs can be relaminated to the base of the lithosphere during slab subduction, where they can interact with the ambient lithospheric mantle to form variably metasomatized zones. Here, high-pressure experiments in sediment-harzburgite systems were conducted at 1.5–2.5 GPa and 800–1300 °C to investigate the interaction between relaminated sediment diapirs and lithospheric mantle. Two end-member processes of mixed experiments and layered (reaction) experiments were explored. In the first end-member, sediment and harzburgite powders were mixed to a homogeneous proportion (1:3), whereas in the second, the two powders were juxtaposed as separate layers. In the first series of experiments, the run products were mainly composed of olivine + orthopyroxene + clinopyroxene + phlogopite in subsolidus experiments, while the phase assemblages were then replaced by olivine + orthopyroxene + melt (or trace phlogopite) in supersolidus experiments. Basaltic and foiditic melts were observed in all supersolidus mixed experiments (~44–52 wt% SiO2 at 1.5 GPa, ~35–43 wt% SiO2 at 2.5 GPa). In the phlogopite-rich experiment (PC431, 1.5 GPa and 1100 °C), the formed melts had low alkali contents (~<2 wt%) and K2O/Na2O ratios (~0.4–1.1). In contrast, the quenched melt in phlogopite-free/poor experiments showed relatively higher alkali contents (~4–8 wt%) and K2O/Na2O ratios (~2–5). Therefore, the stability of phlogopite could control the bulk K2O and K2O/Na2O ratios of magmas derived from the sediment-metasomatized lithospheric mantle. In layered experiments, a reaction zone dominated by clinopyroxene + amphibole (or orthopyroxene) was formed because of the reaction between harzburgite and bottom sediment-derived melts (~62.5–67 wt% SiO2). The total alkali contents and K2O/Na2O ratios of the formed melts were about 6–8 wt% and 1.5–3, respectively. Experimentally formed melts from both mixed and reaction experiments were rich in large ion lithosphile elements and displayed similar patterns with natural potassium-rich arc lavas from oceanic subduction zones (i.e., Mexican, Sunda, Central American, and Aleutian). The experimental results demonstrated that bulk sediment diapirs, in addition to sediment melt, may be another possible mechanism to transfer material from a subducting slab to an upper mantle wedge or lithospheric mantle. On the other hand, the breakdown of phlogopite may play an important role in the mantle source that produces potassium-rich arc lavas in subduction zones.


Sign in / Sign up

Export Citation Format

Share Document