scholarly journals Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber

Author(s):  
Jin Kwon ◽  
Weui-Bong Jeong ◽  
Chin-Suk Hong
2021 ◽  
Vol 11 (19) ◽  
pp. 9079
Author(s):  
Giada Kyaw Oo D’Amore ◽  
Marco Biot ◽  
Francesco Mauro ◽  
Jan Kašpar

Scrubber systems abate the sulphur oxide emissions of engines when cheap fuel oils that are high in sulphur content are employed as combustibles. However, the ships with these voluminous devices installed on board is space demanding. This work analyses the feasibility of incorporating the acoustic abatement of the exhaust gas noise functionality into the scrubber design to provide a combined scrubber–silencer system. For this purpose, a finite element analysis is performed on a simple expansion chamber, which is assessed using both analytical and experimental data. The transmission loss is the acoustic parameter chosen in this work. The numerical model depicts a good correlation with the transmission loss measured on a model scale scrubber. Finally, scrubber geometry modifications alter the transmission loss, changing and/or enhancing its featuring. These abilities indicate the feasibility to confer to scrubber silencing effects.


Author(s):  
J. M. Middelberg ◽  
T. J. Barber ◽  
S. S. Leong ◽  
K. P. Byrne ◽  
E. Leonardi

The acoustic and mean flow performance of different configurations of simple expansion chamber mufflers has been considered. The different configurations include extended inlet/outlet pipes and baffles inside the expansion section of the muffler. Both the acoustic and mean flow performance has been evaluated for each muffler. The acoustic CFD model of the muffler uses an axisymmetric grid with no mean flow and a single period sinusoid of suitable amplitude and duration imposed at the inlet boundary. The time history of the acoustic pressure and particle velocity are recorded at two points, one in the inlet pipe and the other in the outlet pipe. These time histories are Fourier transformed and the transmission loss of the muffler is calculated. The mean flow model of the muffler uses the same geometry, but has a finer mesh and has a suitable inlet velocity applied at the inlet boundary and the pressure drop across the muffler is found. The acoustic performance is compared with published experimental results.


1977 ◽  
pp. 307-326 ◽  
Author(s):  
S. A. Johnson ◽  
J. F. Greenleaf ◽  
C. R. Hansen ◽  
W. F. Samayoa ◽  
M. Tanaka ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Daniel Omondi Onyango ◽  
Robert Kinyua ◽  
Abel Nyakundi Mayaka

The shape of the modal duct of an acoustic wave propagating in a muffling system varies with the internal geometry. This shape can be either as a result of plane wave propagation or three-dimensional wave propagation. These shapes depict the distribution of acoustic pressure that may be used in the design or modification of mufflers to create resonance at cut-off frequencies and hence achieve noise attenuation or special effects on the output of the noise. This research compares the shapes of acoustic duct modes of two sets of four pitch configurations of a helicoid in a simple expansion chamber with and without a central tube. Models are generated using Autodesk Inventor modeling software and imported into ANSYS 18.2, where a fluid volume from the complex computer-aided-design (CAD) geometry is extracted for three-dimensional (3D) analysis. Mesh is generated to capture the details of the fluid cavity for frequency range between 0 and 2000Hz. After defining acoustic properties, acoustic boundary conditions and loads were defined at inlet and outlet ports before computation. Postprocessed acoustic results of the modal shapes and transmission loss (TL) characteristics of the two configurations were obtained and compared for geometries of the same helical pitch. It was established that whereas plane wave propagation in a simple expansion chamber (SEC) resulted in a clearly defined acoustic pressure pattern across the propagation path, the distribution in the configurations with and without the central tube depicted three-dimensional acoustic wave propagation characteristics, with patterns scattering or consolidating to regions of either very low or very high acoustic pressure differentials. A difference of about 80 decibels between the highest and lowest acoustic pressure levels was observed for the modal duct of the geometry with four turns and with a central tube. On the other hand, the shape of the TL curve shifts from a sinusoidal-shaped profile with well-defined peaks and valleys in definite multiples of π for the simple expansion chamber, while that of the other two configurations depended on the variation in wavelength that affects the location of occurrence of cut-on or cut-off frequency. The geometry with four turns and a central tube had a maximum value of TL of about 90 decibels at approximately 1900Hz.


Sign in / Sign up

Export Citation Format

Share Document