scholarly journals Green Shipping—Multifunctional Marine Scrubbers for Emission Control: Silencing Effect

2021 ◽  
Vol 11 (19) ◽  
pp. 9079
Author(s):  
Giada Kyaw Oo D’Amore ◽  
Marco Biot ◽  
Francesco Mauro ◽  
Jan Kašpar

Scrubber systems abate the sulphur oxide emissions of engines when cheap fuel oils that are high in sulphur content are employed as combustibles. However, the ships with these voluminous devices installed on board is space demanding. This work analyses the feasibility of incorporating the acoustic abatement of the exhaust gas noise functionality into the scrubber design to provide a combined scrubber–silencer system. For this purpose, a finite element analysis is performed on a simple expansion chamber, which is assessed using both analytical and experimental data. The transmission loss is the acoustic parameter chosen in this work. The numerical model depicts a good correlation with the transmission loss measured on a model scale scrubber. Finally, scrubber geometry modifications alter the transmission loss, changing and/or enhancing its featuring. These abilities indicate the feasibility to confer to scrubber silencing effects.

Author(s):  
J. M. Middelberg ◽  
T. J. Barber ◽  
S. S. Leong ◽  
K. P. Byrne ◽  
E. Leonardi

The acoustic and mean flow performance of different configurations of simple expansion chamber mufflers has been considered. The different configurations include extended inlet/outlet pipes and baffles inside the expansion section of the muffler. Both the acoustic and mean flow performance has been evaluated for each muffler. The acoustic CFD model of the muffler uses an axisymmetric grid with no mean flow and a single period sinusoid of suitable amplitude and duration imposed at the inlet boundary. The time history of the acoustic pressure and particle velocity are recorded at two points, one in the inlet pipe and the other in the outlet pipe. These time histories are Fourier transformed and the transmission loss of the muffler is calculated. The mean flow model of the muffler uses the same geometry, but has a finer mesh and has a suitable inlet velocity applied at the inlet boundary and the pressure drop across the muffler is found. The acoustic performance is compared with published experimental results.


2010 ◽  
Vol 645-648 ◽  
pp. 865-868 ◽  
Author(s):  
Ruggero Anzalone ◽  
Massimo Camarda ◽  
Daniel Alquier ◽  
M. Italia ◽  
Andrea Severino ◽  
...  

The fabrication of SiC MEMS-based sensors requires new processes able to realize microstructures on either bulk material or on the SiC surface. The hetero-epitaxial growth of 3C-SiC on silicon substrates allows one to overcome the traditional limitations of SiC micro-fabrication. In this work a comparison between single crystal and poly crystal 3C-SiC micro-machined structures will be presented. The free-standing structures realized (cantilevers and membrane) are also a suitable method for residual field stress investigation in 3C-SiC films. Measurement of the Raman shift indicates that the mono and poly-crystal 3C-SiC structures release the stress in different ways. Finite element analysis was performed to determine the stress field inside the films and provided a good fit to the experimental data. A comprehensive experimental and theoretical study of 3C-SiC MEMS structures has been performed and is presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Daniel Omondi Onyango ◽  
Robert Kinyua ◽  
Abel Nyakundi Mayaka

The shape of the modal duct of an acoustic wave propagating in a muffling system varies with the internal geometry. This shape can be either as a result of plane wave propagation or three-dimensional wave propagation. These shapes depict the distribution of acoustic pressure that may be used in the design or modification of mufflers to create resonance at cut-off frequencies and hence achieve noise attenuation or special effects on the output of the noise. This research compares the shapes of acoustic duct modes of two sets of four pitch configurations of a helicoid in a simple expansion chamber with and without a central tube. Models are generated using Autodesk Inventor modeling software and imported into ANSYS 18.2, where a fluid volume from the complex computer-aided-design (CAD) geometry is extracted for three-dimensional (3D) analysis. Mesh is generated to capture the details of the fluid cavity for frequency range between 0 and 2000Hz. After defining acoustic properties, acoustic boundary conditions and loads were defined at inlet and outlet ports before computation. Postprocessed acoustic results of the modal shapes and transmission loss (TL) characteristics of the two configurations were obtained and compared for geometries of the same helical pitch. It was established that whereas plane wave propagation in a simple expansion chamber (SEC) resulted in a clearly defined acoustic pressure pattern across the propagation path, the distribution in the configurations with and without the central tube depicted three-dimensional acoustic wave propagation characteristics, with patterns scattering or consolidating to regions of either very low or very high acoustic pressure differentials. A difference of about 80 decibels between the highest and lowest acoustic pressure levels was observed for the modal duct of the geometry with four turns and with a central tube. On the other hand, the shape of the TL curve shifts from a sinusoidal-shaped profile with well-defined peaks and valleys in definite multiples of π for the simple expansion chamber, while that of the other two configurations depended on the variation in wavelength that affects the location of occurrence of cut-on or cut-off frequency. The geometry with four turns and a central tube had a maximum value of TL of about 90 decibels at approximately 1900Hz.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


Author(s):  
David Marten ◽  
Matthew Lennie ◽  
George Pechlivanoglou ◽  
Christian Oliver Paschereit ◽  
Alessandro Bianchini ◽  
...  

After almost 20 years of absence from research agendas, interest in the vertical axis wind turbine (VAWT) technology is presently increasing again, after the research stalled in the mid 90's in favor of horizontal axis wind turbines (HAWTs). However, due to the lack of research in past years, there are a significantly lower number of design and certification tools available, many of which are underdeveloped if compared to the corresponding tools for HAWTs. To partially fulfill this gap, a structural finite element analysis (FEA) model, based on the Open Source multiphysics library PROJECT::CHRONO, was recently integrated with the lifting line free vortex wake (LLFVW) method inside the Open Source wind turbine simulation code QBlade and validated against numerical and experimental data of the SANDIA 34 m rotor. In this work, some details about the newly implemented nonlinear structural model and its coupling to the aerodynamic solver are first given. Then, in a continuous effort to assess its accuracy, the code capabilities were here tested on a small-scale, fast-spinning (up to 450 rpm) VAWT. The study turbine is a helix shaped, 1 kW Darrieus turbine, for which other numerical analyses were available from a previous study, including the results coming from both a one-dimensional beam element model and a more sophisticated shell element model. The resulting data represented an excellent basis for comparison and validation of the new aero-elastic coupling in QBlade. Based on the structural and aerodynamic data of the study turbine, an aero-elastic model was then constructed. A purely aerodynamic comparison to experimental data and a blade element momentum (BEM) simulation represented the benchmark for QBlade aerodynamic performance. Then, a purely structural analysis was carried out and compared to the numerical results from the former. After the code validation, an aero-elastically coupled simulation of a rotor self-start has been performed to demonstrate the capabilities of the newly developed model to predict the highly nonlinear transient aerodynamic and structural rotor response.


Sign in / Sign up

Export Citation Format

Share Document