Reconstructing Three-Dimensional Fluid Velocity Vector Fields from Acoustic Transmission Measurements

1977 ◽  
pp. 307-326 ◽  
Author(s):  
S. A. Johnson ◽  
J. F. Greenleaf ◽  
C. R. Hansen ◽  
W. F. Samayoa ◽  
M. Tanaka ◽  
...  
Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 52-70
Author(s):  
Mohammad Amin Kazemi ◽  
Janet A. W. Elliott ◽  
David S. Nobes

The three-dimensional (3D) flow below the interface of an evaporating liquid at a low pressure is visualized and quantified using scanning particle image velocimetry. The technique presented highlights the use of a single camera and a relatively fast moving laser sheet to image the flow for an application where using more than one camera is difficult. The technique allows collection of the full three-dimensional velocity vector map over the whole liquid volume. The out-of-plane component of the velocity has been determined using two different processing approaches: (i) deriving the full vector from a 3D cross-correlation of the particle volumes and (ii) applying the continuity equation to determine out-of-plane velocities from the calculated in-plane velocity vector fields. The results obtained from both methods showed good agreement with each other. The 3D velocity field reveals the existence of a torus shaped vortex below the evaporating meniscus that was induced by the exposure of the cold liquid to the warmer solid walls. The velocity data also shows that the maximum velocity occurs below the interface, not at the interface which highlights that the observed vortex is not driven by thermocapillary forces that usually govern the flow during evaporation at smaller scales.


1980 ◽  
Vol 101 (2) ◽  
pp. 243-256 ◽  
Author(s):  
A. E. Perry ◽  
T. T. Lim ◽  
M. S. Chong

The instantaneous velocity vector fields which surround the coherent structures of Perry & Lim (1978) in coflowing jets and wakes have been successfully measured and related to the smoke patterns for Reynolds numbers of order 1000. By the use of critical point theory, a qualitative description of the three-dimensional flow field can be made and is applied to the simplest structures which were classified by Perry & Lim. From these results, the convection of smoke and vorticity from the source and the entrainment properties of the structures are discussed.


2017 ◽  
Vol 32 (19) ◽  
pp. 1750099 ◽  
Author(s):  
Pantelis S. Apostolopoulos

We show that Spatially Inhomogeneous (SI) and Irrotational dust models admit a six-dimensional algebra of Intrinsic Conformal Vector Fields (ICVFs) [Formula: see text] satisfying [Formula: see text], where [Formula: see text] is the associated metric of the two-dimensional distribution [Formula: see text] normal to the fluid velocity [Formula: see text] and the radial unit space-like vector field [Formula: see text]. The Intrinsic Conformal (IC) algebra is determined for each of the curvature value [Formula: see text] that characterizes the structure of the screen space [Formula: see text]. In addition the conformal flatness of the hypersurfaces [Formula: see text] indicates the existence of a ten-dimensional algebra of ICVFs of the three-dimensional metric [Formula: see text]. We illustrate this expectation and propose a method to derive them by giving explicitly the seven proper ICVFs of the Lemaître–Tolman–Bondi (LTB) model which represents the simplest subclass within the Szekeres family.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenyi Su ◽  
Xingqi Xu ◽  
Jinghua Huang ◽  
Bailiang Pan

Abstract Considering the thermodynamical fluid mechanics in the gain medium and laser kinetic processes, a three-dimensional theoretical model of an exciplex-pumped Cs vapor laser with longitudinal and transverse gas flow is established. The slope efficiency of laser calculated by the model shows good agreement with the experimental data. The comprehensive three-dimensional distribution of temperature and particle density of Cs is depicted. The influence of pump intensity, wall temperature, and fluid velocity on the laser output performance is also simulated and analyzed in detail, suggesting that a higher wall temperature can guarantee a higher output laser power while causing a more significant heat accumulation in the cell. Compared with longitudinal gas flow, the transverse flow can improve the output laser power by effectively removing the generated heat accumulation and alleviating the temperature gradient in the cell.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1077
Author(s):  
Muhammad Tamoor ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Aamir Farooq ◽  
Rewayat Khan ◽  
...  

In this study, a numerical approach was adopted in order to explore the analysis of magneto fluid in the presence of thermal radiation combined with mixed convective and slip conditions. Using the similarity transformation, the axisymmetric three-dimensional boundary layer equations were reduced to a self-similar form. The shooting technique, combined with the Range–Kutta–Fehlberg method, was used to solve the resulting coupled nonlinear momentum and heat transfer equations numerically. When physically interpreting the data, some important observations were made. The novelty of the present study lies in finding help to control the rate of heat transfer and fluid velocity in any industrial manufacturing processes (such as the cooling of metallic plates). The numerical results revealed that the Nusselt number decrease for larger Prandtl number, curvature, and convective parameters. At the same time, the skin friction coefficient was enhanced with an increase in both slip velocity and convective parameter. The effect of emerging physical parameters on velocity and temperature profiles for a nonlinear stretching cylinder has been thoroughly studied and analyzed using plotted graphs and tables.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Nonlinearity ◽  
2004 ◽  
Vol 18 (1) ◽  
pp. 175-209 ◽  
Author(s):  
Marcin Bobie ski ◽  
Henryk o a dek

2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


2002 ◽  
Vol 456 ◽  
pp. 277-293 ◽  
Author(s):  
M. McIVER ◽  
R. PORTER

An investigation is made into the trapping of surface gravity waves by totally submerged three-dimensional obstacles and strong numerical evidence of the existence of trapped modes is presented. The specific geometry considered is a submerged elliptical torus. The depth of submergence of the torus and the aspect ratio of its cross-section are held fixed and a search for a trapped mode is made in the parameter space formed by varying the radius of the torus and the frequency. A plane wave approximation to the location of the mode in this space is derived and an integral equation and a side condition for the exact trapped mode are obtained. Each of these conditions is satisfied on a different line in the plane and the point at which the lines cross corresponds to a trapped mode. Although it is not possible to locate this point exactly, because of numerical error, existence of the mode may be inferred with confidence as small changes in the numerical results do not alter the fact that the lines cross.If the torus makes small vertical oscillations, it is customary to try to express the fluid velocity as the gradient of the so-called heave potential, which is assumed to have the same time dependence as the body oscillations. A necessary condition for the existence of this potential at the trapped mode frequency is derived and numerical evidence is cited which shows that this condition is not satisfied for an elliptical torus. Calculations of the heave potential for such a torus are made over a range of frequencies, and it is shown that the force coefficients behave in a singular fashion in the vicinity of the trapped mode frequency. An analysis of the time domain problem for a torus which is forced to make small vertical oscillations at the trapped mode frequency shows that the potential contains a term which represents a growing oscillation.


Sign in / Sign up

Export Citation Format

Share Document