scholarly journals A Neural Approach to Discourse Relation Signal Detection

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Amir Zeldes ◽  
Yang Liu

Previous data-driven work investigating the types and distributions of discourse relation signals, including discourse markers such as 'however' or phrases such as 'as a result' has focused on the relative frequencies of signal words within and outside text from each discourse relation. Such approaches do not allow us to quantify the signaling strength of individual instances of a signal on a scale (e.g. more or less discourse-relevant instances of 'and'), to assess the distribution of ambiguity for signals, or to identify words that hinder discourse relation identification in context ('anti-signals' or 'distractors'). In this paper we present a data-driven approach to signal detection using a distantly supervised neural network and develop a metric, Δs (or 'delta-softmax'), to quantify signaling strength. Ranging between -1 and 1 and relying on recent advances in contextualized words embeddings, the metric represents each word's positive or negative contribution to the identifiability of a relation in specific instances in context. Based on an English corpus annotated for discourse relations using Rhetorical Structure Theory and signal type annotations anchored to specific tokens, our analysis examines the reliability of the metric, the places where it overlaps with and differs from human judgments, and the implications for identifying features that neural models may need in order to perform better on automatic discourse relation classification.

Author(s):  
Sena Assaf ◽  
Mohamad Awada ◽  
Issam Srour

2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Author(s):  
Ernest Pusateri ◽  
Bharat Ram Ambati ◽  
Elizabeth Brooks ◽  
Ondrej Platek ◽  
Donald McAllaster ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiangxu Li ◽  
Jiaxi Liu ◽  
Stanley A. Baronett ◽  
Mingfeng Liu ◽  
Lei Wang ◽  
...  

AbstractThe discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.


Sign in / Sign up

Export Citation Format

Share Document