scholarly journals Thermal Radiation Effects on Heat and Mass Transfer of Magnetohydrodynamics Dusty Jeffrey Fluid past an Exponentially Stretching Sheet

MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 187-200
Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.

2020 ◽  
Vol 16 (6) ◽  
pp. 1577-1594
Author(s):  
Kazeem Babawale Kasali ◽  
Yusuf Olatunji Tijani ◽  
Matthew Oluwafemi Lawal ◽  
Yussuff Titilope Lawal

PurposeIn this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.Design/methodology/approachAn appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.FindingsIt was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.Originality/valueThe purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.


2018 ◽  
Vol 150 ◽  
pp. 06036 ◽  
Author(s):  
Yap Bing Kho ◽  
Abid Hussanan ◽  
Norhafizah Mohd Sarif ◽  
Zulkhibri Ismail ◽  
Mohd Zuki Salleh

The boundary layer heat and mass transfer flow of Casson nanofluid over a stretching sheet with constant wall temperature (CWT) under the magnetic field and thermal radiation effects is investigated numerically. Using similarity transformations, the governing equations are reduced to a set of nonlinear ordinary differential equations (ODEs). These equations are solved numerically by Shooting method. The effects of Casson parameter, magnetic parameter, porosity parameter, radiation parameter, Prandtl number, Brownian parameter and thermophoresis parameter on velocity, temperature and concentration fields are shown graphically and discussed. The results show that increase in Casson parameter causes the wall temperature increase well in the nanofluid.


2021 ◽  
pp. 309-309
Author(s):  
Muavia Mansoo ◽  
Yasir Nawa ◽  
Qazi ul-Hassan

In this paper a modification of existing mathematical model of MHD radiative incompressible fluid flow over exponentially stretching sheet is given by accumulating equation of mass transfer under an influence of chemical reaction. Using local non-similarity variables method, governing equations for heat and mass transfer of viscous fluid flow are efficiently remodeled into the system of dimensionless partial differential equations (PDEs), and later on the obtained system of dimensionless PDEs is tackled numerically using MATLbuilt in solver bvp4c. Graphs of temperature, velocity and concentration profiles are explained through variation of different values of physical parameters. Significant effects of several parameters, for example radiation and magnetic parameters, Eckert and Prandtl numbers on local skin-friction coefficient, local Nusselt and Sherwood numbers are computed in tabular form


Sign in / Sign up

Export Citation Format

Share Document