scholarly journals Novel Patch Antenna Design for Passive UHF RFID Tag on metallic objects

2014 ◽  
Vol 91 (17) ◽  
pp. 29-32
Author(s):  
Anas Sofi ◽  
Khalid Roky ◽  
Ibrahim Hadj Baraka
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Lingfei Mo ◽  
Chenyang Li

Planar UHF RFID antimetal tag can be widely used for the metallic products or packages with metal material inside. A double loop inductive feed planar patch antenna is proposed for UHF RFID tag mounted on metallic objects. Compared to conventional microstrip antennas or PIFA antennas used for UHF RFID tags, the double loop inductive feed patch antenna has a planar structure, with no short via or short wall, which could decrease the manufacturing cost of the tags. The double loop inductive feed structure also increases the radiation performance of the planar antenna. Moreover, the double loop inductive feed structure makes the impedance of the patch antenna be tuned easily for conjugate impedance matching.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1247-1250
Author(s):  
Ya Juan Xie ◽  
Cai Feng Liu

This paper introduces the characteristics of passive uhfrfid tag chip through enumerating the contrast method, including alien higgs-4, nxp g2xm and impinj monza5. And the paper explains the chip impedance, memory allocation in detail. The conclusion is that the performance exist difference between each chip. Understanding the performance of the chip is helpful to design a suitable antenna. To provide reference for uhfrfid label antenna design.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Johanna Virkki ◽  
Zhigang Wei ◽  
Aruhan Liu ◽  
Leena Ukkonen ◽  
Toni Björninen

We present a wearable passive UHF RFID tag based on a slotted patch antenna comprising only textile materials (e-textile, textile substrate, and conductive yearn). As a novel manufacturing approach, we realize the patch-to-ground and antenna-to-IC interfaces using only conductive thread and a sewing machine. We outline the electromagnetic optimization of the antenna for body-worn operation through simulations and present a performance comparison between the e-textile tag and a tag produced using regular electronics materials and methods. The measured results show that the textile tag achieves the electrical performance required in practical applications and that the slotted patch type antenna provides stable electromagnetic performance in different body-worn configurations.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1982 ◽  
Author(s):  
Jamal Zaid ◽  
Abdulhadi E. Abdulhadi ◽  
Tayeb A. Denidni

In this paper, a miniaturized Ultra High Frequency Radio Frequency Identification (UHF-RFID) tag-based sensor antenna using a magneto- dielectric substrate (MDS) for wireless identification and sensor applications is presented. Two models of RFID tag-based sensors are designed, fabricated and measured. The first model uses two RFID tags; both of the tags are incorporated with two RFID chips. A passive sensor is also integrated in one of the proposed tags to serve as a sensor node, while the other tag is used as a reference node. Based on the difference in the minimum power required to activate the reference and sensor nodes, the sensed data (temperature or humidity) can be determined. The magneto-dielectric substrate layer is placed underneath the patch antenna to reduce the size of the proposed sensor by about 75% compared to a conventional RFID tag-based sensor. The magneto-dielectric layer is thin enough to embed in the planer circuit. To reduce the size of the proposed sensor, a multi-port tag for including the reference and sensor node in one antenna is also presented. The proposed RFID tag-based sensors have several features such as small size, they are completely capable for two objectives at the same time and easy to integrate with a planer circuit.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rawad Abdulghafor ◽  
Sherzod Turaev ◽  
Hamad Almohamedh ◽  
Rana Alabdan ◽  
Badr Almutairi ◽  
...  

2015 ◽  
Vol 6 (4) ◽  
pp. 171-184
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Chuan Yin ◽  
Guangjun Wen

2011 ◽  
Vol 25 (5) ◽  
pp. 468-473
Author(s):  
Weifeng Liu ◽  
Yiqi Zhuang ◽  
Zengwei Qi ◽  
Longfei Tang

Sign in / Sign up

Export Citation Format

Share Document