scholarly journals A NOTE ON THE PAPER “ON COMPLETENESS IN METRIC SPACES AND FIXED POINT THEOREMS"

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Deepak Khantwal ◽  
Umesh Cuandra Gairola

In the present note, we show that the assumption of continuity used in the fixed point theorem of Gregori et al. (Results Math. 73 (2018), no. 4, Art. 142, 13) can be relaxed to some weaker version of continuity. More precisely, we prove a fixed point theorem for orbitally continuous and k-continuous mappings in weak G-complete metric space and provide an appropriate example to show that our result is not only valid for continuous mappings but also for some discontinuous mappings. Moreover, we apply our main result to establish a common fixed point theorem for two self-mappings

Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 407-414 ◽  
Author(s):  
Erdal Karapınar ◽  
Nabi Shobkolaei ◽  
Shaban Sedghi ◽  
Mansour Vaezpour

In this paper, we prove a common fixed point theorem for two self-mappings satisfying certain conditions over the class of partial metric spaces. In particular, the main theorem of this manuscript extends some well-known fixed point theorems in the literature on this topic.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Pankaj Kumar ◽  
Manoj Kumar ◽  
Sanjay Kumar

We prove a common fixed point theorem for a pair of mappings. Also, we prove a common fixed point theorem for pairs of self-mappings along with weakly commuting property.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1800
Author(s):  
Seher Sultan Yeşilkaya ◽  
Cafer Aydın

In this study, we introduce the concept of θ-expansive mapping in ordered metric spaces and prove a fixed point theorem for such mappings. We give some fixed point results for θ-expansive mapping in metric spaces and prove fixed point theorems for such mappings. These results extend the main results of many comparable results from the current literature. We also obtain a common fixed point theorem of two weakly compatible mappings in metric spaces. Finally, the examples are presented to support the new theorems and results proved.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Feng Gu ◽  
Hongqing Ye

We introduce the concept ofφ-weakly commuting self-mapping pairs inG-metric space. Using this concept, we establish a new common fixed point theorem of Altman integral type for six self-mappings in the framework of completeG-metric space. An example is provided to support our result. The results obtained in this paper differ from the recent relative results in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Mi Zhou ◽  
Xiao-Lan Liu ◽  
Arslan Hojat Ansari ◽  
Mukesh Kumar Jain ◽  
Jia Deng

In this paper, we firstly introduce a new notion of inverse C k − class functions which extends the notion of inverse C − class functions introduced by Saleem et al., 2018. Secondly, some common fixed point theorems are stated under some compatible conditions such as weak semicompatible of type A , weak semicompatibility, and conditional semicompatibility in metric spaces. Moreover, we introduce a new kind of compatibility called S τ − compatibility which is weaker than E . A . property and also present a common fixed point theorem in metric spaces via inverse C k − class functions. Some examples are provided to support our results.


2016 ◽  
Vol 10 (02) ◽  
pp. 1750030
Author(s):  
Stefan Czerwik ◽  
Krzysztof Król

In the paper, we shall prove the results on the existence of fixed points of mapping defined on generalized metric space satisfying a nonlinear contraction condition, which is a generalization of Diaz and Margolis theorem (see [A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305–309]). We also present local fixed point theorems both in generalized and ordinary metric spaces. Our results are generalizations of Banach fixed point theorem and many other results.


Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.


2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


2018 ◽  
Vol 27 (1) ◽  
pp. 37-48
Author(s):  
ANDREI HORVAT-MARC ◽  
◽  
LASZLO BALOG ◽  

In this paper we present an extension of fixed point theorem for self mappings on metric spaces endowed with a graph and which satisfies a Bianchini contraction condition. We establish conditions which ensure the existence of fixed point for a non-self Bianchini contractions T : K ⊂ X → X that satisfy Rothe’s boundary condition T (∂K) ⊂ K.


Sign in / Sign up

Export Citation Format

Share Document