scholarly journals Estimation of genotype MTBDRPLUS line probe assay in detection of rifampicin and isoniazid resistance in comparison to liquid culture (BACTEC-960) drug susceptibility testing in a tertiary care hospital from Eastern India

Biomedicine ◽  
2021 ◽  
Vol 41 (2) ◽  
pp. 472-476
Author(s):  
Chandan Kumar Poddar ◽  
Narmata Kumari ◽  
Rakesh Kumar ◽  
Shivendra Kumar Shahi ◽  
Naresh Kumar ◽  
...  

Introduction and Aim: India has the uppermost trouble of Multidrug resistant tuberculosis (MDR-TB) is a major challenge controlling resistance, reducing transmission and improving handling outcomes in MDR-TB patients is dependent on susceptibility testing. Isoniazid (INH) and rifampicin (Rif) are the key first-line antituberculosis drugs, and resistance to these drugs i.e., MDR-TB, is likely to result in treatment failure and poor clinical outcomes. The present study was done to compare the performance of line probe assay test (GenoType® MTBDRplus) with liquid culture (MGIT 960) system for the detection of resistance to first-line drugs.   Materials and Methods: We estimate the performance of LPAs to BACTEC MGIT 960 system for susceptibility testing of bacterial resistance to first-line drugs: rifampicin (RIF), isoniazid (INH).   Results: We performing Drug susceptibility testing (DST), 219/258 MTB cultures were viable after subculture the results of DST using the MGIT 960 system were compared to those obtained by line probe assay. LPA detected a total 46/258 (17.81%) samples as drug resistant, of which 35/258 (13.70%) were resistant to both rifampicin and isoniazid (MDR), 6/258 (2.28%) were rifampicin mono?resistant samples and 11/258 (4.11%) were isoniazid mono?resistant. Out of the culture?positive samples (219), LPA detected 39/219 (17.83%) as drug?resistant, of which 31/219 (14.2%) were resistant to both rifampicin and isoniazid, 5/193 (2.08%) were rifampicin mono?resistant and 8/219 (3.7%) were isoniazid mono?resistant. Conclusion: Drug resistant TB poses an enormous threat to TB control programs worldwide. Effective treatment of MDR-TB is very expensive, particularly in middle income countries such as India.

2017 ◽  
Vol 56 (2) ◽  
Author(s):  
T. Phuong Quan ◽  
Zharain Bawa ◽  
Dona Foster ◽  
Tim Walker ◽  
Carlos del Ojo Elias ◽  
...  

ABSTRACTUse of whole-genome sequencing (WGS) for routine mycobacterial species identification and drug susceptibility testing (DST) is becoming a reality. We compared the performances of WGS and standard laboratory workflows prospectively, by parallel processing at a major mycobacterial reference service over the course of 1 year, for species identification, first-lineMycobacterium tuberculosisresistance prediction, and turnaround time. Among 2,039 isolates with line probe assay results for species identification, 74 (3.6%) failed sequencing or WGS species identification. Excluding these isolates, clinically important species were identified for 1,902 isolates, of which 1,825 (96.0%) were identified as the same species by WGS and the line probe assay. A total of 2,157 line probe test results for detection of resistance to the first-line drugs isoniazid and rifampin were available for 728M. tuberculosiscomplex isolates. Excluding 216 (10.0%) cases where there were insufficient sequencing data for WGS to make a prediction, overall concordance was 99.3% (95% confidence interval [CI], 98.9 to 99.6%), sensitivity was 97.6% (91.7 to 99.7%), and specificity was 99.5% (99.0 to 99.7%). A total of 2,982 phenotypic DST results were available for 777M. tuberculosiscomplex isolates. Of these, 356 (11.9%) had no WGS comparator due to insufficient sequencing data, and in 154 (5.2%) cases the WGS prediction was indeterminate due to discovery of novel, previously uncharacterized mutations. Excluding these data, overall concordance was 99.2% (98.7 to 99.5%), sensitivity was 94.2% (88.4 to 97.6%), and specificity was 99.4% (99.0 to 99.7%). Median processing times for the routine laboratory tests versus WGS were similar overall, i.e., 20 days (interquartile range [IQR], 15 to 31 days) and 21 days (15 to 29 days), respectively (P= 0.41). In conclusion, WGS predicts species and drug susceptibility with great accuracy, but work is needed to increase the proportion of predictions made.


2019 ◽  
Vol 147 ◽  
Author(s):  
R. S. Salvato ◽  
S. Schiefelbein ◽  
R. B. Barcellos ◽  
B. M. Praetzel ◽  
I. S. Anusca ◽  
...  

AbstractTuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131Mycobacterium tuberculosis (M.tb)DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of thekatG,inhA andrpoB genes and RDRiosublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRiodeletion was observed in 42 (32%) of theM.tbisolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%)M.tbisolates, we found mutations associated with rifampicin (RIF) resistance inrpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance inkatG andinhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in therpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.


2019 ◽  
Vol 45 (2) ◽  
Author(s):  
Angela Pires Brandao ◽  
Juliana Maira Watanabe Pinhata ◽  
Rosangela Siqueira Oliveira ◽  
Vera Maria Neder Galesi ◽  
Helio Hehl Caiaffa-Filho ◽  
...  

ABSTRACT Objective: To evaluate the rapid diagnosis of multidrug-resistant tuberculosis, by using a commercial line probe assay for rifampicin and isoniazid detection (LPA-plus), in the routine workflow of a tuberculosis reference laboratory. Methods: The LPA-plus was prospectively evaluated on 341 isolates concurrently submitted to the automated liquid drug susceptibility testing system. Results: Among 303 phenotypically valid results, none was genotypically rifampicin false-susceptible (13/13; 100% sensitivity). Two rifampicin-susceptible isolates harboured rpoB mutations (288/290; 99.3% specificity) which, however, were non-resistance-conferring mutations. LPA-plus missed three isoniazid-resistant isolates (23/26; 88.5% sensitivity) and detected all isoniazid-susceptible isolates (277/277; 100% specificity). Among the 38 (11%) invalid phenotypic results, LPA-plus identified 31 rifampicin- and isoniazid-susceptible isolates, one isoniazid-resistant and six as non-Mycobacterium tuberculosis complex. Conclusions: LPA-plus showed excellent agreement (≥91%) and accuracy (≥99%). Implementing LPA-plus in our setting can speed up the diagnosis of multidrug-resistant tuberculosis, yield a significantly higher number of valid results than phenotypic drug susceptibility testing and provide further information on the drug-resistance level.


2022 ◽  
Vol 98 (6) ◽  
pp. 697-705
Author(s):  
V. Tolchkov ◽  
Y. Hodzhev ◽  
B. Tsafarova ◽  
E. Bachiyska ◽  
Yu. Atanasova ◽  
...  

Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis. Drug susceptibility testing is performed by phenotypic and molecular tests. Commonly used for phenotypic drug susceptibility testing is the automated BACTEC system in a liquid culture medium. Drug susceptibility by line probe molecular tests was introduced almost 15 years ago. Recently whole genome sequencing (WGS) analysis of M. tuberculosis strains demonstrated that genotyping of drug-resistance could be accurately performed. Several software tools were developed.Our study aimed to perform whole-genome sequencing on phenotypically confirmed multi-drug resistant (MDR) M. tuberculosis strains, to identify drug-resistant mutations and to compare whole-genome sequencing profiles with line probe assay and phenotypic results.Materials and methods. We performed analysis on 34 MDR M. tuberculosis Bulgarian strains. Phenotypic drug susceptibility testing was performed on the BACTEC system. For molecular testing of drug susceptibility to first- and second-line tuberculostatics, we applied line probe assay Geno Type MTBDR plus v.1.0 и Geno Type MTBDR sl v.1.0. Sequencing was performed on MiSeq. Generated FASTQ files were analyzed for known drugresistant mutations with the software platform Mykrobe v.0.8.1.Results. All three methods — phenotypic analysis using the BACTEC system, genetic analysis of strains applying the Geno Type test and Mykrobe software gave comparable sensitivity/resistance results for the studied strains. All phenotypically proven rifampicin and isoniazid-resistant strains were 100% confirmed using Mykrobe software. The C-15T mutation is a marker for isoniazid resistance in strains of the SIT41 spoligotype. We observed a 75% (21/28) agreement between BACTEC and Mykrobe for ethambutol resistance. Phenotypically, 87% (n = 27) of the strains are resistant to streptomycin, but only 59% (n = 19) are proven by Mykrobe software. Comparing phenotypic and genotypic resistance to ofloxacin, amikacin and kanamycin, we observed 100% coincidence of results.Conclusions. Whole-genome sequencing approach is relatively expensive and laborious but useful for detailed analysis such as epidemiological genotyping and molecular drug susceptibility testing.


2021 ◽  
Vol 25 (10) ◽  
pp. 839-845
Author(s):  
M. Ejo ◽  
A. Van Deun ◽  
A. Nunn ◽  
S. Meredith ◽  
S. Ahmed ◽  
...  

OBJECTIVES: To assess the performance of the GenoType MTBDRsl v1, a line-probe assay (LPA), to exclude baseline resistance to fluoroquinolones (FQs) and second-line injectables (SLIs) in the Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB 1 (STREAM 1) trial.METHODS: Direct sputum MTBDRsl results in the site laboratories were compared to indirect phenotypic drug susceptibility testing (pDST) results in the central laboratory, with DNA sequencing as a reference standard.RESULTS: Of 413 multidrug-resistant TB (MDR-TB) patients tested using MTBDRsl and pDST, 389 (94.2%) were FQ-susceptible and 7 (1.7%) FQ-resistant, while 17 (4.1%) had an inconclusive MTBDRsl result. For SLI, 372 (90.1%) were susceptible, 5 (1.2%) resistant and 36 (8.7%) inconclusive. There were 9 (2.3%) FQ discordant pDST/MTBDRsl results, of which 3 revealed a mutation and 5 (1.3%) SLI discordant pDST/MTBDRsl results, none of which were mutants on sequencing. Among the 17 FQ- and SLI MTBDRsl-inconclusive samples, sequencing showed 1 FQ- and zero SLI-resistant results, similar to frequencies among the conclusive MTBDRsl. The majority of inconclusive MTBDRsl results were associated with low bacillary load samples (acid-fast bacilli smear-negative or scantily positive) compared to conclusive results (P < 0.001).CONCLUSION: MTBDRsl can facilitate the rapid exclusion of FQ and SLI resistances for enrolment in clinical trials.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
S. Siva Kumar ◽  
S. Ashok Kumar ◽  
Gomathi Sekar ◽  
K. Devika ◽  
M. Bhasker ◽  
...  

Geographically, most tuberculosis (TB) cases in 2018 were reported from India. This TB burden is compounded by MDR-TB and XDR-TB. The strategies for the management and control of TB in the community depend on an understanding of the mode of spread of the different strains of TB isolates in the community. To determine the distribution and trends of M. tb strains over the time period in the community due to treatment, we carried out the present study on changes over two decades. Design/Methods. A total of 1218  M. tb isolates (year: 2001–2018) from Tiruvallur, India, were genotyped by spoligotyping after DNA extraction and subjected to anti-TB drug susceptibility testing for the first-line anti-TB drugs. Results. On analysis with the SpolDB4 database, majority (2001–2003: 53.32% and 2015–2018: 46.3%) of the isolates belonged to East African Indian (EAI) lineage, and the orphans designated in comparison to SpolDB4 stood 33% among 2001–2003 strain collection and 46.3% among 2015–2018 strain collection. 10.2% (2001–2003) and 9.26% (2015 to 2018) of isolates were monoresistant to isoniazid (H). MDR strains were less common among EAI strains (3.2%) compared to non-EAI strains (10.32%). Conclusions. EAI is the most predominant lineage in Tiruvallur, despite the presence of highly transmissible lineages like Beijing for the last two decades. The prevalence of MDR-TB is below the national average of 2-3% among the new TB cases in the last two decades. The reason can be attributed to the well-established nature of the locally circulating strains in this region which are not associated with drug resistance.


2017 ◽  
Vol 132 (4) ◽  
pp. 480-487
Author(s):  
Jefferson Michael Jones ◽  
Lori R. Armstrong

Objectives: Drug-susceptibility testing (DST) of Mycobacterium tuberculosis is necessary for identifying drug-resistant tuberculosis, administering effective treatment regimens, and preventing the spread of drug-resistant tuberculosis. DST is recommended for all culture-confirmed cases of tuberculosis. We examined trends in delayed and unreported DST results in the Centers for Disease Control and Prevention’s National Tuberculosis Surveillance System. Methods: We analyzed culture-confirmed tuberculosis cases reported to the National Tuberculosis Surveillance System during 1993-2014 for annual trends in initial DST reporting for first-line antituberculosis drugs and trends in on-time, delayed, and unreported results. We defined on-time reporting as DST results received during the same calendar year in which the patient’s case was reported or ≤4 months after the calendar year ended and delayed reporting as DST results received after the calendar year. We compared cases with on-time, delayed, and unreported DST results by patient and tuberculosis program characteristics. Results: The proportion of cases with reported results for all first-line antituberculosis drugs increased during 1993-2011. Reporting of pyrazinamide results was lower than reporting of other drugs. However, during 2000-2012, of 134 787 tuberculosis cases reported to the National Tuberculosis Surveillance System, reporting was on time for 125 855 (93.4%) cases, delayed for 5332 (4.0%) cases, and unreported for 3600 (2.7%) cases. Conclusions: Despite increases in the proportion of cases with on-time DST results, delayed and unreported results persisted. Carefully assessing causes for delayed and unreported DST results should lead to more timely reporting of drug-resistant tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document