scholarly journals Simplified, Real-time, Free access to the Complete Medical Record in the NICU is Coming with Implementation of the 21st Century Cures Act

2020 ◽  
Vol 15 (11) ◽  
pp. 58-59
Author(s):  
Jonathan Fanaroff ◽  
Robert Turbow ◽  
Gilbert Martin
2021 ◽  
Vol 68 (2) ◽  
pp. 426-428
Author(s):  
Jennifer Carlson ◽  
Rachel Goldstein ◽  
Kim Hoover ◽  
Nichole Tyson

2016 ◽  
Vol 44 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Mark A. Rothstein

The HIPAA Privacy Rule is notoriously weak because of its incomplete coverage, numerous exclusions and exemptions, and limited rights for individuals. The three areas in which it provides the most protection are fundraising, marketing, and research. Provisions of the 21st Century Cures Act, pending in Congress, and the Notice of Proposed Rulemaking to amend the federal research regulations (Common Rule), awaiting final regulatory action, would weaken the privacy protections for research. If these measures are adopted, the HIPAA Privacy Rule would have so little value that it might not be worth the aggravation and burden.


2017 ◽  
Vol 52 (4) ◽  
pp. 264-265 ◽  
Author(s):  
Michael Gabay

10.2196/24824 ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. e24824
Author(s):  
William J Gordon ◽  
Kenneth D Mandl

The 21st Century Cures Act and the recently published “final rule” define standardized methods for obtaining electronic copies of electronic health record (EHR) data through application programming interfaces. The rule is meant to create an ecosystem of reusable, substitutable apps that can be built once but run at any hospital system “without special effort.” Yet, despite numerous provisions around information blocking in the final rule, there is concern that the business practices that govern EHR vendors and health care organizations in the United States could still stifle innovation. We describe potential app ecosystems that may form. We caution that misaligned incentives may result in anticompetitive behavior and purposefully limited functionality. Closed proprietary ecosystems may result, limiting the value derived from interoperability. The 21st Century Cures Act and final rule are an exciting step in the direction of improved interoperability. However, realizing the vision of a truly interoperable app ecosystem is not predetermined.


2021 ◽  
Author(s):  
Jean-Michel Lellouche ◽  
Romain Bourdalle-Badie ◽  
Eric Greiner ◽  
Gilles Garric ◽  
Angelique Melet ◽  
...  

<p>The GLORYS12V1 system is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12° resolution covering the 1993-present altimetry period, designed and implemented in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). All the essential ocean physical variables from this reanalysis are available with free access through the CMEMS data portal.</p><p>The GLORYS12V1 reanalysis is based on the current CMEMS global real-time forecasting system, apart from a few specificities that are detailed in this manuscript. The model component is the NEMO platform driven at the surface by atmospheric conditions from the ECMWF ERA-Interim reanalysis. Ocean observations are assimilated by means of a reduced-order Kalman filter. Along track altimeter sea level anomaly, satellite sea surface temperature and sea ice concentration data and in situ temperature and salinity (T/S) vertical profiles are jointly assimilated. A 3D-VAR scheme provides an additional correction for the slowly-evolving large-scale biases in temperature and salinity.</p><p>The performance of the reanalysis is first addressed in the space of the assimilated observations and shows a clear dependency on the time-dependent in situ observation system, which is intrinsic to most reanalyses. The general assessment of GLORYS12V1 highlights a level of performance at the state-of-the-art and the reliability of the system to correctly capture the main expected climatic interannual variability signals for ocean and sea ice, the general circulation and the inter-basins exchanges. In terms of trends, GLORYS12V1 shows a higher than observed  warming trend together with a lower than observed global mean sea level rise.</p><p>Comparisons made with an experiment carried out on the same platform without assimilation show the benefit of data assimilation in controlling water masses properties and their low frequency variability. Examination of the deep signals below 2000 m depth shows that the reanalysis does not suffer from artificial signals even in the pre-Argo period.</p><p>Moreover, GLORYS12V1 represents particularly well the small-scale variability of surface dynamics and compares well with independent (non-assimilated) data. Comparisons made with a twin experiment carried out at ¼° resolution allows characterizing and quantifying the strengthened contribution of the 1/12° resolution onto the downscaled dynamics.</p><p>In conclusion, GLORYS12V1 provides a reliable physical ocean state for climate variability and supports applications such as seasonal forecasts. In addition, this reanalysis has strong assets to serve regional applications and should provide relevant physical conditions for applications such as marine biogeochemistry. In a near future, GLORYS12V1 will be maintained to be as close as possible to real time and could therefore provide a relevant reference statistical framework for many operational applications.</p>


1998 ◽  
Vol 5 (3) ◽  
pp. 207-226 ◽  
Author(s):  
Michael J. Markowski ◽  
Adarshpal S. Sethi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document