scholarly journals On-line tool wear monitoring based on machine learning

2021 ◽  
Vol 1 (1) ◽  
pp. 11-20
Author(s):  
Dianfang MU ◽  
Xianli LIU ◽  
Caixu YUE ◽  
Qiang LIU ◽  
Zhengyan BAI ◽  
...  
Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Patricia Iglesias Victoria ◽  
Rui Liu

The machining process monitoring, especially the tool wear monitoring, is very critical in modern automated gear machining environment which needs instant detection of cutting tool state and/or process conditions, quick final diagnosis and appropriate actions. It has been realized that the non-uniform hardness of the workpiece material due to the improper heat treatment can cause expedited tool wear and unexpected tool breakage, which greatly increases difficulties and complexities in monitoring the tool conditions in gear cutting. This paper provides a solution to detect the wear conditions of the gear milling cutter in the cutting of workpiece materials with hardness variations using the audible sound signals. In this study, cutting tools and workpieces are prepared to have different flank wear classes and hardness variations respectively. A series of gear milling experiments are operated with a broad range of cutting conditions to collect sound signals. A machine learning algorithm that incorporates support vector machine (SVM) approach coupled with the application of time and frequency domain analysis is developed to correlate observed sound signals’ signatures to specified tool wear classes and workpiece hardness levels. The performance evaluation results of the proposed monitoring system have shown accurate predictions in detecting tool wear conditions and workpiece hardness variations from the sound signals in gear milling.


2021 ◽  
Vol 252 ◽  
pp. 01046
Author(s):  
Shan Fan ◽  
Yi Huang ◽  
Haixia Zeng

At present, many kinds of sensors are used for on-line monitoring of cutting process, tool identification and timely replacement. However, most of the original monitoring signals extracted from the cutting process are time series signals, which contain too much process noise. As the signal noise is relatively low, it is difficult to establish a direct relationship with the tool wear. Therefore, how to obtain the effective information from the online monitoring signal and extract the characteristics that can directly reflect the tool wear from the complex original signal, so as to establish an effective and reliable tool wear monitoring system, is the key and difficult problem in the research of the online monitoring technology of tool wear. Firstly, an experimental platform based on the force sensor for on-line monitoring of tool wear was built, and the signal obtained by the force sensor was used to monitor the tool wear, and the feature information was extracted and fused. The innovation of the project lies in the use of Gaussian process regression (GPR) method to predict the tool wear, the use of feature dimensional rise technology, to reduce the impact of noise, on the premise of ensuring the prediction accuracy, improve the confidence interval of GPR prediction results, improve the stability and reliability of the monitoring process.


Sign in / Sign up

Export Citation Format

Share Document