scholarly journals STOCK PRICE TREND PREDICTION USING SUPPORT VECTOR MACHINE AND CORAL REEF OPTIMIZATION ALGORITHM

2020 ◽  
Vol 18 (1) ◽  
pp. 68-87
Author(s):  
A. DEJI-OLARERIN ◽  
O. FOLORUNSO ◽  
O. R. VINCENT ◽  
O. M. OLAYIWOLA

Due to non-linearity and non-stationary characteristics of stock market time series data, prior approaches have not been adequate enough for predicting stock market prices. Support vector machines are classifier that have been reported in the literature as having good recognition accuracy and have been applied in the area of predicting financial stock market prices and was found efficient. It is however noted that the performance of the SVM is affected by the values of the hyper-parameters used by the SVM. There is the need to find a way for searching for the best hyper-parameters that optimizes the performance of an SVM model. Coral Reef Optimization (CRO) is one of many nature-inspired algorithms used extensively to solve optimization problems. It is very effective in solving optimization problems because it is able to achieve global optimization. This paper’s contribution is the development of Coral Reef search algorithms for the improvement of the hyper-parameters of the SVM used for stock price trend prediction. The Algorithm is validated using stock data of two banks. The results obtained out-performed un-optimized SVM, and have the same performance as that of SVM optimized with the FireFly optimization algorithm.    


2019 ◽  
Vol 8 (3) ◽  
pp. 1224-1228

Prediction of Stock price is now a day’s an existing and interesting research area in financial and academic sectors to know the scale of economies. There did not exists any significant set of rules to estimate and predict the scale of share in the stock exchange. Many evolutionary technologies are existing such as technical, fundamental, time, statistical and series analysis which help us to attempt the prediction process, but none of the methods are proved as reliable and accurate tool to the society in the estimation of stock exchange or share market scales. Here in this paper we attempted to do innovative work through Machine Learning approach to predict or sense the behaviour tracking of the stock market sensex. Linear regression, Support Vector regression, Decision Tree, Ramdom Forest Regressor and Extra Tree Regressor are the Machine Learning models implemented effectively in predicting the stock prices and define the activity between the exchanges the securities between the buyers and sellers. We predicted the price of the stock based on the closing value and stock price. An algorithm with high accuracy we do the process of comparison for the accuracy of each of the model and finally is considered as better algorithm for predicting stock price. As share market is a vague domain we cannot predict the conditions occur, and also share market can never be predicted, this job can be done easily and technically through this work and the main aim of this paper is to apply algorithms in Machine Learning in predicting the stock prices.



Author(s):  
Puteri Hasya Damia Abd Samad ◽  
Sofianita Mutalib ◽  
Shuzlina Abdul-Rahman

This study focuses on the use of machine learning algorithms to analyse financial news on stock market prices. Stock market prediction is a challenging task because the market is known to be very volatile and dynamic. Investors face these kinds of problems as they do not properly understand which stock product to subscribe or when to sell the product with an optimum profit. Analyzing the information individually or manually is a tedious task as many aspects have to be considered. Five different companies from Bursa Malaysia namely CIMB, Sime Darby, Axiata, Maybank and Petronas were chosen in this study. Two sets of experiments were performed based on different data types. The first experiment employs textual data involving 6368 articles, extracted from financial news that have been classified into positive or negative using Support Vector Machine (SVM) algorithm. Bags of words and bags of combination words are extracted as the features for the first experiment. The second experiment employs the numeric data type extracted from historical data involving 5321 records to predict whether the stock price is going up (positive) or down (negative) using Random Forest algorithm. The Rain Forest algorithm gives better accuracy in comparison with SVM algorithm with 99% and 68% accuracy respectively. The results demonstrate the complexities of the textual-based data and demand better feature extraction technique.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao Teng ◽  
Tuo Wang ◽  
Xiang Zhang ◽  
Long Lan ◽  
Zhigang Luo

Stock trend prediction refers to predicting future price trend of stocks for seeking profit maximum of stock investment. Although it has aroused broad attention in stock markets, it is still a tough task not only because the stock markets are complex and easily volatile but also because real short-term stock data is so limited that existing stock prediction models could be far from perfect, especially for deep neural networks. As a kind of time-series data, the underlying patterns of stock data are easily influenced by any tiny noises. Thus, how to augment limited stock price data is an open problem in stock trend prediction, since most data augmentation schemes adopted in image processing cannot be brutally used here. To this end, we devise a simple yet effective time-sensitive data augmentation method for stock trend prediction. To be specific, we augment data by corrupting high-frequency patterns of original stock price data as well as preserving low-frequency ones in the frame of wavelet transformation. The proposed method is motivated by the fact that low-frequency patterns without noisy corruptions do not hurt the true patterns of stock price data. Besides, a transformation technique is proposed to recognize the importance of the patterns at varied time points, that is, the information is time-sensitive. A series of experiments carried out on a real stock price dataset including 50 corporation stocks verify the efficacy of our data augmentation method.





2021 ◽  
Author(s):  
Shin-Hung Chang ◽  
Cheng-Wen Hsu ◽  
Hsing-Ying Li ◽  
Wei-Sheng Zeng ◽  
Jan-Ming Ho


Stock market prediction through time series is a challenging as well as an interesting research areafor the finance domain, through which stock traders and investors can find the right time to buy/sell stocks. However, various algorithms have been developed based on the statistical approach to forecast the time series for stock data, but due to the volatile nature and different price ranges of the stock price one particular algorithm is not enough to visualize the prediction. This study aims to propose a model that will choose the preeminent algorithm for that particular company’s stock that can forecastthe time series with minimal error. This model can assist a trader/investor with or without expertise in the stock market to achieve profitable investments. We have used the Stock data from Stock Exchange Bangladesh, which covers 300+ companies to train and test our system. We have classified those companies based on the stock price range and then applied our model to identify which algorithm suites most for a particular range of stock price. Comparative forecasting results of all algorithms in diverse price ranges have been presented to show the usefulness of this Predictive Meta Model



Stock Trading has been one of the most important parts of the financial world for decades. People investing in the share market analyze the financial history of a corporation, the news related to it and study huge amounts of data so as to predict its stock price trend. The right investment i.e. buying and selling a company stock at the right time leads to monetary benefits and can make one a millionaire overnight. The stock market is an extremely fluctuating platform wherein data is produced in humongous quantities and is influenced by numerous disparate factors such as socio-political issues, financial activities like splits and dividends, news as well as rumors. This work proposes a novel system “IntelliFin” to predict the share market trend. The system uses the various stock market technical indicators along with the company's historical market data trends to predict the share prices. The system employs the sentiment determination of a company's financial and socio-political news for a more accurate prediction. This system is implemented using two models. The first is a hybrid LSTM model optimized by an ADAM optimizer. The other is a hybrid ML model which integrates a Support Vector Regressor, K-Nearest Neighbor classifier, an RF classifier and a Linear Regressor using a Majority Voting algorithm. Both models employ a sentiment analyzer to account for the news impacting the stock prices which is powered by NLP. The models are trained continuously using Reinforcement Learning implemented by the Q-Learning Algorithm to increase the consistency and accuracy. The project aims to support the inexperienced investors, who don't have enough experience in investing in the stock market and help them maximize their profit and minimize or eliminate the losses. The developed system will also serve as a tool for professional investors to help and aid their decision making.



2017 ◽  
Vol 18 (4) ◽  
pp. 911-923 ◽  
Author(s):  
Madhu Sehrawat ◽  
A.K. Giri

The present study examines the relationship between Indian stock market and economic growth from a sectoral perspective using quarterly time-series data from 2003:Q4 to 2014:Q4. The results of the autoregressive distributed lag (ARDL) approach bounds test confirm the existence of a cointegrating relationship between sector-specific gross domestic product (GDP) and sector-specific stock indices. The empirical results reveal that sector-specific economic growth are significantly influenced by changes in the respective sector-specific stock price indices in the long run as well as in the short run. Apart from that, the control variables, such as trade openness and inflation, act as the instrument variables in explaining the variations in the sector-specific GDP of the economy. The results of Granger causality test demonstrate unidirectional long-run as well as short-run causality running from sector specific stock prices to respective sector GDP. The findings suggest that economic growth of the country is sensitive to respective sub-sector stock market investments. The findings highlight the reasons for cyclical and counter-cyclical business phase for the overall economy.



Sign in / Sign up

Export Citation Format

Share Document