Evaluation of Proximity Warning Devices for Cranes

Author(s):  
J. Derald Morgan

Extensive testing and evaluation of the proximity warning device (PWD) have clearly shown that the concept of using the measurement of the electric field to determine the relative position of a crane with respect to power lines to be flawed. PWDs tested are not dependable as their warning is, in many cases, nonrepeatable and, in some instances, totally unreliable. The devices depend entirely on a measurement of |E| to detect and warn of proximity to high voltage electric power lines. However, the typical |E| configuration produced by the presence of high voltage electric lines is subject to many variables, including but not limited to

2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.


2020 ◽  
Vol 17 ◽  
pp. 105-108
Author(s):  
Marko Kaasik ◽  
Sander Mirme

Abstract. The electric power that can be transmitted via high-voltage transmission lines is limited by the Joule heating of the conductors. In the case of coastal wind farms, the wind that produces power simultaneously contributes to the cooling of high-voltage overhead conductors. Ideally this would allow for increased power transmission or decreased dimensions and cost of the conductor wires. In this study we investigate how well the wind speed in coastal wind farms is correlated with wind along a 75 km long 330 kW power line towards inland. It is found that correlations between wind speed in coastal wind farms at turbine height and conductor-level (10 m) are remarkably lower (R=0.39–0.64) than between wind farms at distances up to 100 km from each other (R=0.76–0.97). Dense mixed forest surrounding the power line reduces both local wind speed and the correlations with coastal higher-level wind, thus making the cooling effect less reliable.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6388
Author(s):  
Rafał Tarko ◽  
Konrad Kochanowicz ◽  
Wiesław Nowak ◽  
Waldemar Szpyra ◽  
Tadeusz Wszołek

The growing interest in the negative environmental impact of overhead power lines of high and extra-high voltage stems from the increasing ecological awareness of societies. Consequently, a number of respective legal restrictions have been issued and actions have been undertaken to reduce this impact, especially in the electric field of the power frequency. The aim of this paper is to analyze the possibilities of reducing the width of electric field influence zones by changing the design parameters of power lines and defining the spatial distribution of its conductors. This analysis was carried out using the developed and experimentally verified models for determining the electric field and audible noise in the power line environment. The computational models were used to analyze the width of the electric field influence zones of 400 kV lines and the noise levels at the borders of these zones. The research focused on single and double circuit 400 kV power lines. It was revealed that a reduction in electric field emissions is accompanied by an increase in noise emission. However, the analyses confirmed that the width of the electric field influence zones can be significantly reduced if the most important design and construction parameters of the line are properly selected. The obtained conclusions are valid not only for 400 kV lines, but also set directions to follow when changing the parameters of high voltage transmission lines of other rated voltages (above 100 kV).


Sign in / Sign up

Export Citation Format

Share Document