scholarly journals PRODUÇÃO DE LIPÍDIOS ESTRUTURADOS POR ACIDÓLISE ENZIMÁTICA DE ÓLEO DE SEMENTE DE UVA CATALISADA PELA LIPOZYME RM IM (RHIZOMUCOR MIEHEI)

2018 ◽  
Author(s):  
I. S. C COZENTINO ◽  
M. O CERRI ◽  
D. C. U CAVALLINI ◽  
A. V PAULA
Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 831 ◽  
Author(s):  
Juan Calero ◽  
Diego Luna ◽  
Carlos Luna ◽  
Felipa Bautista ◽  
Beatriz Hurtado ◽  
...  

Two inorganic solids have been evaluated as supports of Lipozyme RM IM, a Rhizomucor miehei lipase immobilized on a macroporous anion exchange resin, in order to improve its application as a biocatalyst in the synthesis of biofuels. The experimental conditions have been optimized to get the selective transesterification of sunflower oil, by using a multi-factorial design based on the response surface methodology (RSM). In this way, the effects of several reaction parameters on the selective ethanolysis of triglycerides to produce Ecodiesel, a biodiesel-like biofuel constitute by one mole of monoglyceride (MG) and two moles of fatty acid ethyl ester (FAEE), have been evaluated. Thus, it was obtained that a 6:1 oil/ethanol molar ratio, 0.215 g of biocatalyst supported in silica-gel (0.015 g Lipase/0.2 g silica-gel), 50 µL of 10 N NaOH, together with previous optimized reaction parameters, 35 °C reaction temperature and 120 min of reaction time, gave the best results (conversions around 70%; selectivity around 65%; kinematic viscosities about 9.3 mm2/s) in the reaction studied. Besides, Lipozyme RM IM, supported on silica-gel, biocatalyst exhibited a very good stability, remaining its activity even after 15 cycles.


2006 ◽  
Vol 12 (3) ◽  
pp. 181-186 ◽  
Author(s):  
Muzafera Paljevac ◽  
Maja Habulin ◽  
Zeljko Knez

Ionic liquids are low melting point salts that represent an exciting new class of reaction solvents. Many reactions show advantages when carried out in ionic liquids, either with regard to enhanced reaction rates, improved selectivity, or easier reuse of catalysts. To ascertain the influence of ionic liquids on the enzyme activity, three different ionic liquids 1-butyl-3-methylimidazolium chloride ([bmim] [CI]) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) were synthesized and investigated as potential media for the hydrolysis of carboxymethyl cellulose, catalyzed by non-immobilized cellulase from Humicola insolens (Celluzyme 0,7T) and for ester synthesis, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM). Enzyme-catalyzed reactions were performed in a batch stirred reactor at atmospheric pressure. Celluzyme 0,7T showed better activity in hydrophobic ionic liquid ([bmim] [PF6]), as compared to hydrophilic ionic liquid ([bmim] [BF4]). In the case of Lipozyme RM IM, the synthetic activity of the enzyme was strongly reduced by incubating the enzyme in ionic liquids.


2019 ◽  
Vol 35 (5) ◽  
pp. 3-11 ◽  
Author(s):  
I.I. Gubaidullin ◽  
A.S. Fedorov ◽  
D.G. Kozlov

Key functional elements of the vector (promoter, leader and terminator regions) that provide the expression of a target l,3-l,4-(3-glucanase gene from Rhizomucor miehei in the Komagataella kurtzmanii yeast have been optimized. It was shown that the promoter regions of the gene AOX1 from the Pichia pastoris yeast currently reclassified as Komagataella phaffti and from К. kurtzmanii yeast as parts of a vector provided equal levels of expression of the target gene in the cells of the recipient strain К. kurtzmanii Y727his4, i.e. they were completely interchangeable. This means that genetic constructs that were previously developed for the biosynthesis of recombinant proteins in К. phajfii are able to provide an effective expression in the К kurtzmanii yeast. The leader peptide MF4I (used as a variant of mif4I containing one amino acid substitution) and the leader peptide maxHH (containing the double proregion of the Hspl50 protein from Saccharomyces cerevisiae) confirmed the status of the most powerful elements among the five leader sequences analyzed. Their efficiency was 1.7 times higher than that of the standard leader from the yeast alpha-factor, and by 20% higher than the characteristics of the second group of artificial leaders. At the same time, it was found that, the choice of the terminator region had the strongest influence on the expression of the target gene among all of the vector functional elements. The best terminator elements were variants derived from the transcription termination region of the AOX1 gene, and the difference in the expression level of the target gene using different terminators was approximately 4.5 times. Based on the analysis of the obtained data, the optimal composition of the key functional elements of the expression vector was determined ; it included the promoter and terminator regions of the AOX1 yeast gene and one of the artificial leaders, mif4I or maxHH. β-glucanase, Komagataella kurtzmanii, yeast, secretion, strain producer The work was financially supported by the Ministry of Science and Higher education of the Russian Federation (Unique Project Identifier RFMEFI60717X0179) using the Unique Scientific Facility of the National Bio-Resource Center «All-Russian Collection of Industrial Microorganisms», NRC «Kurchatov Institute» - GOSNIIGENETIKA


1995 ◽  
Vol 4 (3) ◽  
pp. 129-135 ◽  
Author(s):  
Peter Skagerlind ◽  
Mikael Jansson ◽  
Björn Bergenståhl ◽  
Karl Hult

Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 281 ◽  
Author(s):  
Anna Chojnacka ◽  
Witold Gładkowski

Synthesis of structured phosphatidylcholine (PC) enriched with myristic acid (MA) was conducted by acidolysis and interesterification reactions using immobilized lipases as catalysts and two acyl donors: trimyristin (TMA) isolated from ground nutmeg, and myristic acid obtained by saponification of TMA. Screening experiments indicated that the most effective biocatalyst for interesterification was Rhizomucor miehei lipase (RML), whereas for acidolysis, the most active were Thermomyces lanuginosus lipase (TLL) and RML. The effect of the molar ratio of substrates (egg-yolk PC/acyl donor), enzyme loading, and different solvent on the incorporation of MA into PC and on PC recovery was studied. The maximal incorporation of MA (44 wt%) was achieved after 48 h of RML-catalyzed interesterification in hexane using substrates molar ratio (PC/trimyristin) 1/5 and 30% enzyme load. Comparable results were obtained in toluene with 1/3 substrates molar ratio. Interesterification of PC with trimyristin resulted in significantly higher MA incorporation than acidolysis with myristic acid, particularly in the reactions catalyzed by RML.


Sign in / Sign up

Export Citation Format

Share Document