scholarly journals FLOOD FORECASTING MODEL USING THE COMBINATION APPROACH

2020 ◽  
Vol 1 (2) ◽  
pp. 59-64
Author(s):  
Hu Weighuo ◽  
Hu He

This paper reviews the qualities of a good flood forecasting model such as timeliness, accuracy, and reliability. The article reviews the current forecasting models which are based on fuzzy logic, artificial neural network, as well as combination. The combination approach is gaining popularity and is found to be more flexible, accurate, reliable, and highly efficient in terms of development and output.

2020 ◽  
Vol 8 (3) ◽  
pp. 165
Author(s):  
Dong-Jiing Doong ◽  
Shien-Tsung Chen ◽  
Ying-Chih Chen ◽  
Cheng-Han Tsai

Coastal freak waves (CFWs) are unpredictable large waves that occur suddenly in coastal areas and have been reported to cause casualties worldwide. CFW forecasting is difficult because the complex mechanisms that cause CFWs are not well understood. This study proposes a probabilistic CFW forecasting model that is an advance on the basis of a previously proposed deterministic CFW forecasting model. This study also develops a probabilistic forecasting scheme to make an artificial neural network model achieve the probabilistic CFW forecasting. Eight wave and meteorological variables that are physically related to CFW occurrence were used as the inputs for the artificial neural network model. Two forecasting models were developed for these inputs. Model I adopted buoy observations, whereas Model II used wave model simulation data. CFW accidents in the coastal areas of northeast Taiwan were used to calibrate and validate the model. The probabilistic CFW forecasting model can perform predictions every 6 h with lead times of 12 and 24 h. The validation results demonstrated that Model I outperformed Model II regarding accuracy and recall. In 2018, the developed CFW forecasting models were investigated in operational mode in the Operational Forecast System of the Taiwan Central Weather Bureau. Comparing the probabilistic forecasting results with swell information and actual CFW occurrences demonstrated the effectiveness of the proposed probabilistic CFW forecasting model.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3373
Author(s):  
Ludek Cicmanec

The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.


Sign in / Sign up

Export Citation Format

Share Document