scholarly journals Applicability of Fuzzy Logic and Artificial Neural Network for Unpaved Airfield Surface Bearing Strength Prediction

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3373
Author(s):  
Ludek Cicmanec

The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Mohammad Alizadeh Mansouri ◽  
Rouzbeh Dabiri

AbstractSoil liquefaction is a phenomenon through which saturated soil completely loses its strength and hardness and behaves the same as a liquid due to the severe stress it entails. This stress can be caused by earthquakes or sudden changes in soil stress conditions. Many empirical approaches have been proposed for predicting the potential of liquefaction, each of which includes advantages and disadvantages. In this paper, a novel prediction approach is proposed based on an artificial neural network (ANN) to adequately predict the potential of liquefaction in a specific range of soil properties. To this end, a whole set of 100 soil data is collected to calculate the potential of liquefaction via empirical approaches in Tabriz, Iran. Then, the results of the empirical approaches are utilized for data training in an ANN, which is considered as an option to predict liquefaction for the first time in Tabriz. The achieved configuration of the ANN is utilized to predict the liquefaction of 10 other data sets for validation purposes. According to the obtained results, a well-trained ANN is capable of predicting the liquefaction potential through error values of less than 5%, which represents the reliability of the proposed approach.


2010 ◽  
Vol 118-120 ◽  
pp. 221-225 ◽  
Author(s):  
Cheng Long Xu ◽  
Sheng Li Lv ◽  
Zhen Guo Wang ◽  
Wei Zhang

The purpose of this work was to predict the fatigue life of pre-corroded LC4 aluminum alloy by applying artificial neural network (ANN). Specimens were exposed to the same corrosive environment for 24h, 48h, and 72h. Fatigue tests were conducted under different stress levels. The existing experimental data sets were used for training and testing the construction of proposed network. A suitable network architecture (2-15-1) was proposed with good performance in this study. For evaluating the method efficiency, the experimental results have been compared to values predicted by ANN. The maximum absolute relative error for predicted values does not exceed 5%. Therefore it can be concluded that using neural networks to predict the fatigue life of LC4 is feasible and reliable.


2011 ◽  
Vol 4 (1) ◽  
pp. 575-594
Author(s):  
J. Koller ◽  
S. Zaharia

Abstract. We describe in this paper the new version of LANL*. Just like the previous version, this new version V2.0 of LANL* is an artificial neural network (ANN) for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for any type of orbit. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L* calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically Δ L* < 0.2 which corresponds to an error of 3% at geosynchronous orbit. This new LANL-V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.


2019 ◽  
Vol 5 (10) ◽  
pp. 2120-2130 ◽  
Author(s):  
Suraj Kumar ◽  
Thendiyath Roshni ◽  
Dar Himayoun

Reliable method of rainfall-runoff modeling is a prerequisite for proper management and mitigation of extreme events such as floods. The objective of this paper is to contrasts the hydrological execution of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) for modelling rainfall-runoff in the Sone Command, Bihar as this area experiences flood due to heavy rainfall. ENN is a modified version of ANN as it includes neural parameters which enhance the network learning process. Selection of inputs is a crucial task for rainfall-runoff model. This paper utilizes cross correlation analysis for the selection of potential predictors. Three sets of input data: Set 1, Set 2 and Set 3 have been prepared using weather and discharge data of 2 raingauge stations and 1 discharge station located in the command for the period 1986-2014.  Principal Component Analysis (PCA) has then been performed on the selected data sets for selection of data sets showing principal tendencies.  The data sets obtained after PCA have then been used in the model development of ENN and ANN models. Performance indices were performed for the developed model for three data sets. The results obtained from Set 2 showed that ENN with R= 0.933, R2 = 0.870, Nash Sutcliffe = 0.8689, RMSE = 276.1359 and Relative Peak Error = 0.00879 outperforms ANN in simulating the discharge. Therefore, ENN model is suggested as a better model for rainfall-runoff discharge in the Sone command, Bihar.


2021 ◽  
Author(s):  
Meor M. Meor Hashim ◽  
M. Hazwan Yusoff ◽  
M. Faris Arriffin ◽  
Azlan Mohamad ◽  
Dalila Gomes ◽  
...  

Abstract Stuck pipe is one of the leading causes of non-productive time (NPT) while drilling. Machine learning (ML) techniques can be used to predict and avoid stuck pipe issues. In this paper, a model based on ML to predict and prevent stuck pipe related to differential sticking (DS) is presented. The stuck pipe indicator is established by detecting and predicting abnormalities in the drag signatures during tripping and drilling activities. The solution focuses on detecting differential sticking risk via assessing hookload signatures, based on previous experience from historical wells. Therefore, selecting the proper training set has proven to be a crucial stage of model development, especially considering the challenges in data quality. The model is trained with historical wells with and without differential sticking issues. The solution is based on the Artificial Neural Network (ANN) approach. The model is designed to provide users, i.e., driller or monitoring specialist, a warning whenever a risk is identified. Since multi-step forecasting is used, the warning is given with enough time for the driller or monitoring specialist to evaluate which preventative action or intervention is necessary. The warnings are provided typically between 30 minutes and 4 hours ahead. The model validation includes the performance metrics and a confusion matrix. Practical cases with real-time wells are also provided. The ML model was proven robust and practical with our data sets, for both historical and live wells. The huge amount of data produced while drilling holds valuable information and when smartly fed into an Artificial Intelligence (AI) model, it can prevent NPT such as stuck pipe events as demonstrated in this paper.


2011 ◽  
Vol 4 (3) ◽  
pp. 669-675 ◽  
Author(s):  
J. Koller ◽  
S. Zaharia

Abstract. We describe in this paper the new version of LANL*, an artificial neural network (ANN) for calculating the magnetic drift invariant L*. This quantity is used for modeling radiation belt dynamics and for space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for a much larger region. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L* calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically ΔL* < 0.2 which corresponds to an error of 3 % at geosynchronous orbit. This new LANL* V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.


Traffic accidents occurred on highway in Turkey cause materially and morally damage. To decrease the damage, prediction model developed. In this study, demographic and traffic data which from 1970 to 2007 are used. These data are consist of dependent and independent variables. Dependent variable is formed Number of Dead (ND). As for independent variables are comprised Population (P), Registered Number of Vehicle (VN), Vehicle-km (VK), Number of Drivers (DN). Models are developed using Artificial Neural Network (ANN) and Logarithmic Regression (LR) enhanced by Smeed. PVNVKDN model developed taking real values logarithm is the best performance of models in LR technique. VKDN created by using historical data sets is the best model in ANN technique. As for models created by randomly selected data, the best model is VKDN. When performances of best models are compared, VKDN is the best model because of lowest error rate.


Author(s):  
Sobri Harun ◽  
Nor Irwan Ahmat Nor ◽  
Amir Hashim Mohd. Kassim

Permodelan bagi proses hidraulik dan hidrologi adalah penting apabila dilihat dari sudut kepelbagaian penggunaan sumber air seperti janakuasa hidroeletrik, pengairan, pengagihan bekalan air, dan kawalan banjir. Terdapat banyak kajian sebelum ini yang telah menggunakan kaedah rangkaian neural tiruan atau artificial neural network (ANN) untuk permodelan pelbagai perhubungan tak linear dan kompleks dalam proses hidrologi. Kaedah rangkaian neural tiruan ini telah diketahui bahawa ia merupakan suatu struktur matematik yang mudah ubah (flexible) dan berpotensi untuk menjana dan merumus set-set data masukan dan keluaran yang kurang tepat atau kabur dan tidak dihalusi dengan sempurna. Kawasan kajian adalah kawasan tadahan Sungai Lui (Selangor, Malaysia). Kertas Kerja ini mengutarakan cadangan menggunakan kaedah rangkaian neural tiruan ini bagi mendapatkan jumlah air larian permukaan harian dengan menggunakan hujan sebagai nod masukan kepada model berkenaan. Terdapat dua kaedah telah digunakan dalam pemilihan bilangan nod masukan iaitu seperti yang telah dicadangkan oleh [10] dan [5]. Seterusnya, hasil keputusan yang diperolehi daripada permodelan rangkaian neural tiruan ini dibandingkan dengan hasil keputusan yang diperolehi daripada model HEC-HMS. Didapati bahawa model rangkaian neural tiruan dapat menjana dan merumus perhubungan antara air larian permukaan dan curahan hujan lebih baik berbanding dengan model HEC-HMS. Kata kunci: hidrologi, rangkaian neural tiruan, hubungan air larian permukaan-curahan hujan The modelling of hydraulic and hydrological processes is important in view of the many uses of water resources such as hydropower generation, irrigation, water supply, and flood control. There are many previous works using the artificial neural network (ANN) method for modelling various complex non-linear relationships of hydrologic processes. The ANN is well known as a flexible mathematical structure and has the ability to generalize patterns in imprecise or noisy and ambiguous input and output data sets. The study area is Sungai Lui catchment (Selangor, Malaysia). This paper presents the proposed ANN model for prediction of daily runoff using the rainfall as input nodes. The method for selection of input nodes by [10] and [5] is applied. Further, the results are compared between ANN and HEC-HMS model. It has been found that the ANN models show a good generalization of rainfall-runoff relationship and is better than HEC-HMS model. Key words: hydrologic, artificial neural network, rainfall-runoff relationship


2000 ◽  
Author(s):  
K. T. Yang

Abstract It is now known the generally it can be demonstrated that artificial neural network (ANN), particularly the fully-connected feedforward configuration with backward propagation error-correction routine, can be a rather effective and accurate tool to correlate performance data of thermal devices such as heat exchangers (Sen and Yang, 2000; Kalogirou, 1999). Good examples are the recent demonstrations for the compact fin-tube heat exchangers (Diaz et al., 1999a; Yang et al., 2000; Pacheco-Vega et al., 1999) including those with complex geometries and also two-phase evaporators (Pacheco-Vega et al., 2000) as well as the dynamic modeling of such heat exchangers and their adaptive control (Diaz et al., 1999b; Diaz et al., 2000). Unfortunately, despite such successes, there are still implementation issues of the ANN analysis which lead to uncertainties in its applications and the achieved results. The present paper discusses such issues and the current practices in dealing with them. Those that will be discussed include the number of hidden layers, the number of nodes in each hidden layer, the range within which the input-output data are normalized, the initial assignment of weights and biases, the selection of training data sets, and the training rate. As will be shown, the specific choices are by no means trivial, and yet are rather important in achieving good ANN results in any given application. Since there are no general sound theoretical basis for such choices at the present time, past experience and numerical experimentation are often the best guides. However, many of these choices and issues relating to them involve optimization. As a result. Some of the existing optimization algorithms may prove to be useful and highly desirable in this regard. The current on-going research to provide some rational basis in these issues will also be discussed. Finally, it will also be mentioned that successfully implemented ANNs have many additional uses in practice. Examples include parameter sensitivity analysis, training, design of new experiments, and clustering of data sets.


Sign in / Sign up

Export Citation Format

Share Document