scholarly journals A2.2 - Sensory characteristics of carbon fiber based strain sensors and integration techniques into textile reinforced structures for in situ monitoring of thermoplastic composites

2013 ◽  
Author(s):  
E. Haentzsche ◽  
A. Nocke ◽  
A. Matthes ◽  
Ch. Cherif

2020 ◽  
pp. 089270572094537
Author(s):  
Van-Tho Hoang ◽  
Bo-Seong Kwon ◽  
Jung-Won Sung ◽  
Hyeon-Seok Choe ◽  
Se-Woon Oh ◽  
...  

Promising carbon fiber-reinforced thermoplastic (CF/polyetherketoneketone (PEKK)) composites were fabricated by the state-of-the-art technology known as “Automated Fiber Placement.” The mechanical properties of CF/PEKK were evaluated for four different postprocessing methods: in situ consolidation, annealing, vacuum bag only (VBO), and hot press (HP). The evaluation was performed by narrowing down the relevant processing parameters (temperature and layup speed). Furthermore, the void content and crystallinity of CF/PEKK were measured to determine the effect of these postprocessing processes. The HP process resulted in the best quality with the highest interlaminar shear strength, highest crystallinity degree, and lowest void content. The second most effective method was VBO, and annealing also realized an improvement compared with in situ consolidation. The correlation between the postprocessing method and the void content and crystallinity degree was also discussed.



2019 ◽  
Vol 20 (9) ◽  
pp. 1945-1957
Author(s):  
Toty Onggar ◽  
Eric Häntzsche ◽  
Rolf-Dieter Hund ◽  
Chokri Cherif


2019 ◽  
Vol 554 ◽  
pp. 305-314 ◽  
Author(s):  
Stephanie A. Kedzior ◽  
Wasim Kapadia ◽  
Philip Egberts ◽  
Kunal Karan ◽  
Milana Trifkovic ◽  
...  


2016 ◽  
Vol 29 (9) ◽  
pp. 1027-1036 ◽  
Author(s):  
Chang Wei Liu ◽  
Chun Yan Qu ◽  
Lei Han ◽  
De Zhi Wang ◽  
Wan Bao Xiao ◽  
...  

Induction heating, a direct and contactless heating method, is generally more rapid and energetically more efficient than other heating methods used. In this work, we report the high-temperature imidization of carbon fiber/polyimide (PI) composites using an in situ induction heating method. Furthermore, we compare the advantages of the method to a conventional thermal procedure. The formed composites feature almost identical imidization rates, glass transition temperatures, and thermal oxidative stabilities cured at the same heating temperatures using a different heating process. Upon doping with ferriferous oxide, the ability of the magnetic nanoparticles in an alternating current field was studied to further drive the heating process and increase the rising and cooling time. The in situ induction heating process proves to be a powerful method for the high-temperature polymerization of high-performance thermoplastic composites, particularly for a PI matrix.



2020 ◽  
Vol 26 (3) ◽  
pp. 308-316
Author(s):  
Svetlana RISTESKA ◽  
Anka T. PETKOSKA ◽  
Samoil SAMAK ◽  
Marian DRIENOVSKY

In situ consolidation of thermoplastic composites by Automated Tape Placement (ATP) is challenging. High quality ATP grade pre-preg material and tape head equipped with an efficient heat sources like lasers offer an opportunity towards high deposition rates and improved mechanical properties of composite materials. In this study uni-directional carbon fiber/ polyphenylene sulfide (UD tape prepreg CF/PPS), carbon fiber/polyetheretherketone (UD tape prepreg CF/PEEK) as well as blend of carbon fiber/polyetheretherketone/polyphenylene sulfide (UD tapes prepregs CF/PEEK/PPS) laminates are compared in terms of their properties after beeing processed by ATP technology. CF/PPS, CF/PEEK and blend CF/PPS/PEEK laminate specimens were processed using in-situ laser-assisted ATP (LATP) process. LATP processing parameters used in this study were chosen based on a preliminary trials; the results provide a basis for refinement of these parameters and prepreg material with an optimal and balanced set of final mechanical properties. This study showed an attempt how to manage the processing parameters for LATP process and to obtain composite materials with tailored properties. The process for production of thermoplastic plates with LATP head in general is a process that is governed by many parameters such as: laser power, angle of incidence, roller pressure and temperature, placement speed, tool temperature, then types of the roller material and the tool material. These parameters are not subject of discussing in this paper; they are kept constant, and the goal of the paper is to manage the crystallinity level within the composite thermoplastic material during annealing step at different temperatures after LATP process. Also, the void content during the production process could be controlled. More particularly, the authors showed that composites based on PPS matrix manufactured with LATP process possess higher flexural strength, with less void content compared to samples based on PEEK matrix. These samples showed also higher crystallinity after annealing step.



2015 ◽  
Vol 651-653 ◽  
pp. 405-408
Author(s):  
Min Chang Sung ◽  
Geun Sung Lee ◽  
Seung Yong Lee ◽  
Seong Ik Jeon ◽  
Cheol Hee Ahn ◽  
...  

Carbon fiber reinforced composites (CFRCs) have been used in various high-end industries due to their outstanding specific mechanical properties. Recently, carbon nanotube (CNT)-grafted carbon fibers (CFs) made via direct growth has emerged as an advanced and hierarchical reinforcement that can improve the reinforcing effect of CFs in CFRCs. On the other hand, CF reinforced thermoplastic composites (CFRTPs) have attracted much attention because of their quick and mass production capability, e.g., which is important for automotive part manufacturing. Here, we report on the manufacture of CFRTPs using CNT-grafted CFs and their mechanical properties. First, the interfacial shear strength of CNT-grafted CFs with thermoplastic resins was characterized to demonstrate improved interfacial properties due to the CNTs grafted on CFs. Then, the composites were manufactured in two ways; polymer nanoparticles and in-situ polymerization. Polymer nanoparticles were used to improve the interfacial properties due to their small size and good mechanical locking with CF surfaces. In-situ polymerization was also used to manufacture CFRTPs, i.e., monomers with catalyst were transferred into CNT-grafted CF fabric preform using vacuum assisted resin transfer molding and then polymerized into solid matrix. This in-situ polymerization enabled the manufacture of CNT-grafted CF thermoplastic composites by overcoming the difficulties of filling the surface of CNT-grafted CFs with thermoplastic polymers. Finally, the mechanical, thermal, electrical, and damping properties of CNT-grafted CF thermoplastic composites were characterized and compared with their thermoset composites.



2001 ◽  
Vol 89 ◽  
pp. 24-26
Author(s):  
Y. Jayet ◽  
J.-C. Baboux
Keyword(s):  


2008 ◽  
Vol 52 (1-2) ◽  
pp. 85
Author(s):  
Ákos Becker ◽  
Gábor Harsányi


Sign in / Sign up

Export Citation Format

Share Document