scholarly journals Hydrological and Meteorological Drought Forecasting for the Yesilirmak River Basin, Turkey

Author(s):  
Alyar BOUSTANİ HEZARANİ ◽  
Utku ZEYBEKOĞLU ◽  
Aslı ÜLKE KESKİN
2018 ◽  
Author(s):  
Feng Ma ◽  
Lifeng Luo ◽  
Aizhong Ye ◽  
Qingyun Duan

Abstract. Endorheic and arid regions around the world are suffering from serious drought problems. In this study, a drought forecasting system based on eight state-of-the-art climate models from North American Multi-Model Ensemble (NMME) and a Distributed Time-Variant Gain Hydrological Model (DTVGM) was established and assessed over the upstream and midstream of Heihe River basin (UHRB and MHRB), a typical arid endorheic basin. The 3-month Standardized Precipitation Index (SPI3) and 1-month Standardized Streamflow Index (SSI1) were used to capture meteorological and hydrological drought, and values below -1 indicate drought events. The skill of the forecasting systems was evaluated in terms of Anomaly Correlation (AC) and Brier skill score (BSS). The UHRB and MHRB showed season-dependent meteorological drought predictability and forecast skill, with higher values during winter and autumn than that during spring. For hydrological forecasts, the forecast skill in the UHRB was higher than that in MHRB. Predicting meteorological droughts more than 2 months in advance became difficult because of complex climate mechanism. However, the hydrological drought forecasts could show some skills up to 3–6 lead months due to memory of initial hydrologic conditions (ICs) during cold and dry seasons. During wet seasons, there's no skillful hydrological predictions since lead-2 month because the dominant role of meteorological forcings. During spring, the improvement of hydrological drought predictions is the most significant as more streamflow was generated by seasonal snowmelt. Besides meteorological forcings and ICs, human activities have reduced the hydrological variability and increased hydrological predictability during the wet seasons in the MHRB.


Author(s):  
Dao Nguyen Khoi ◽  
Truong Thao Sam ◽  
Pham Thi Loi ◽  
Bui Viet Hung ◽  
Van Thinh Nguyen

Abstract In this paper, the responses of hydro-meteorological drought to changing climate in the Be River Basin located in Southern Vietnam are investigated. Climate change scenarios for the study area were statistically downscaled using the Long Ashton Research Station Weather Generator tool, which incorporates climate projections from Coupled Model Intercomparison Project 5 (CMIP5) based on an ensemble of five general circulation models (Can-ESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). The Soil and Water Assessment Tool model was employed to simulate streamflow for the baseline time period and three consecutive future 20 year periods of 2030s (2021–2040), 2050s (2041–2060), and 2070s (2061–2080). Based on the simulation results, the Standardized Precipitation Index and Standardized Discharge Index were estimated to evaluate the features of hydro-meteorological droughts. The hydrological drought has 1-month lag time from the meteorological drought and the hydro-meteorological droughts have negative correlations with the El Niño Southern Oscillation and Pacific Decadal Oscillation. Under the climate changing impacts, the trends of drought severity will decrease in the future; while the trends of drought frequency will increase in the near future period (2030s), but decrease in the following future periods (2050 and 2070s). The findings of this study can provide useful information to the policy and decisionmakers for a better future planning and management of water resources in the study region.


Author(s):  
Raphael Muli Wambua

This article uses the non-linear integrated drought index (NDI) for managing drought and water resources forecasting in a tropical river basin. The NDI was formulated using principal component analysis (PCA). The NDI used hydro-meteorological data and forecasted using recursive multi-step neural networks. In this article, drought forecasting and projection is adopted for planning ahead for mitigation and for the adaptation of adverse effects of droughts and food insecurity in the river basin. Results that forecasting ability of NDI model using ANNs decreased with increase in lead time. The formulated NDI as a tool for projecting into the future.


2014 ◽  
Vol 11 (5) ◽  
pp. 487-494
Author(s):  
Yujuan Wang ◽  
Shudong Wang ◽  
Shengtian Yang ◽  
Yuling Zhao ◽  
Mingcheng Wang ◽  
...  

The remote sensing data have become the irreplaceable source of data for the regions with little or without rainfall data, but these data also require scientific analysis, correction and application. This paper uses FY-2 rainfall data and the case studies of the droughts occurred in the Weihe River Basin from 2006 to 2009 to monitor the spatial and temporal evolution of climatic droughts. The monitoring results indicate that: (1) Except for 2008 which was a dry year, the other years in the Weihe River Basin had normal dry/wet conditions; (2) From October 2008 to January 2009, the rainfall was significantly reduced across the Weihe River Basin, and the continual rainfall was even less than 1 mm for December and January with a precipitation anomaly percentage lower than -80%, a sign of severe climatic drought. But the rainfall has improved since February 2009, when the precipitation reached 17.8 mm and Pa exceeded 100%, which helped to relieve the stress from drought resistance. A heavy precipitation continued for four months from June to September 2008, with the Pa exceeding 50%; (3) Due to the better temporal and spatial continuity than the ground-based meteorological observation, FY-2 precipitation data have good application prospects in the meteorological drought monitoring at a national or regional macro-scale.


2016 ◽  
Vol 130 (3-4) ◽  
pp. 1133-1148 ◽  
Author(s):  
Weinan Ren ◽  
Yixuan Wang ◽  
Jianzhu Li ◽  
Ping Feng ◽  
Ronald J. Smith

Sign in / Sign up

Export Citation Format

Share Document