Neural Networks Applications to Combustion Process Simulation

Author(s):  
Б. В. Крыжановский ◽  
Н. Н. Смирнов ◽  
В. Ф. Никитин ◽  
Я. М. Карандашев ◽  
М. Ю. Мальсагов ◽  
...  

Моделирование горения является ключевым аспектом полномасштабного трехмерного моделирования современных и перспективных двигателей для авиационно-космических силовых установок. В данной работе изучается возможность решения задач химической кинетики с использованием искусственных нейронных сетей. С помощью классических численных методов были построены наборы обучающих данных. Выбирая среди различных архитектур многослойных нейронных сетей и настраивая их параметры, мы разработали достаточно простую модель, способную решить эту проблему. Полученная нейронная сеть работает в рекурсивном режиме и может предсказывать поведение химической многовидовой динамической системы за много шагов. Combustion process simulations are the key aspect enabling full-scale 3D simulations of advanced aerospace engines. This work studies solving chemical kinetics problems with artificial neural networks. The training datasets were generated by classical numerical methods. Choosing a multi-layer neural network architecture and fine-tuning its parameters, we developed a simple model that can solve the problem. The neural network obtained works is recursive, and by running many iterations it can predict the behavior of a chemical multimodal dynamic system.  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Vinay Chandwani ◽  
Vinay Agrawal ◽  
Ravindra Nagar

Artificial neural networks (ANNs) have been the preferred choice for modeling the complex and nonlinear material behavior where conventional mathematical approaches do not yield the desired accuracy and predictability. Despite their popularity as a universal function approximator and wide range of applications, no specific rules for deciding the architecture of neural networks catering to a specific modeling task have been formulated. The research paper presents a methodology for automated design of neural network architecture, replacing the conventional trial and error technique of finding the optimal neural network. The genetic algorithms (GA) stochastic search has been harnessed for evolving the optimum number of hidden layer neurons, transfer function, learning rate, and momentum coefficient for backpropagation ANN. The methodology has been applied for modeling slump of ready mix concrete based on its design mix constituents, namely, cement, fly ash, sand, coarse aggregates, admixture, and water-binder ratio. Six different statistical performance measures have been used for evaluating the performance of the trained neural networks. The study showed that, in comparison to conventional trial and error technique of deciding the neural network architecture and training parameters, the neural network architecture evolved through GA was of reduced complexity and provided better prediction performance.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


In this paper we will identify a cry signals of infants and the explanation behind the screams below 0-6 months of segment age. Detection of baby cry signals is essential for the pre-processing of various applications involving crial analysis for baby caregivers, such as emotion detection. Since cry signals hold baby well-being information and can be understood to an extent by experienced parents and experts. We train and validate the neural network architecture for baby cry detection and also test the fastAI with the neural network. Trained neural networks will provide a model and this model can predict the reason behind the cry sound. Only the cry sounds are recognized, and alert the user automatically. Created a web application by responding and detecting different emotions including hunger, tired, discomfort, bellypain.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U121-U128
Author(s):  
Serafim I. Grubas ◽  
Georgy N. Loginov ◽  
Anton A. Duchkov

Massive computation of seismic traveltimes is widely used in seismic processing, for example, for the Kirchhoff migration of seismic and microseismic data. Implementation of the Kirchhoff migration operators uses large precomputed traveltime tables (for all sources, receivers, and densely sampled imaging points). We have tested the idea of using artificial neural networks for approximating these traveltime tables. The neural network has to be trained for each velocity model, but then the whole traveltime table can be compressed by several orders of magnitude (up to six orders) to the size of less than 1 MB. This makes it convenient to store, share, and use such approximations for processing large data volumes. We evaluate some aspects of choosing neural-network architecture, training procedure, and optimal hyperparameters. On synthetic tests, we find a reasonably accurate approximation of traveltimes by neural networks for various velocity models. A final synthetic test shows that using the neural-network traveltime approximation results in good accuracy of microseismic event localization (within the grid step) in the 3D case.


2019 ◽  
Vol 1 (92) ◽  
pp. 3-8
Author(s):  
E.V. Bodyansky ◽  
Т.Е. Antonenko

Optimizing the learning speedof deep neural networks is an extremely important issue. Modern approaches focus on the use of neural networksbased on the Rosenblatt perceptron. But the results obtained are not satisfactory for industrial and scientific needs inthe context of the speed of learning neural networks. Also, this approach stumbles upon the problems of a vanishingand exploding gradient. To solve the problem, the paper proposed using a neo-fuzzy neuron, whose properties arebased on the F-transform. The article discusses the use of neo-fuzzy neuron as the main component of the neuralnetwork. The architecture of a deep neo-fuzzy neural network is shown, as well as a backpropagation algorithmfor this architecture with a triangular membership function for neo-fuzzy neuron. The main advantages of usingneo-fuzzy neuron as the main component of the neural network are given. The article describes the properties of aneo-fuzzy neuron that addresses the issues of improving speed and vanishing or exploding gradient. The proposedneo-fuzzy deep neural network architecture is compared with standard deep networks based on the Rosenblattperceptron.


2021 ◽  
Vol 25 (1) ◽  
pp. 140-145
Author(s):  
D.Yu. Klekho ◽  
◽  
E.B. Karelina ◽  
Yu.P. Batyrev ◽  
◽  
...  

The classification and description of the tasks solved using computer vision technologies are given. The use of neural networks to create systems for selecting objects in an image stream is considered in more detail. It also explains what is meant by training a neural network and discusses in detail the main stages of machine learning. The features of the application of convolutional neural networks for the segmentation of image objects, i.e., the selection of objects in the image, are indicated. The choice of the neural network architecture has been made, which has the property of extracting basic information from the image. The characteristics of the segmentation problem and the basic principles of computer vision are given. Conclusions are given on the possible application of the developed neural network model for solving various applied problems.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2014 ◽  
Vol 38 (6) ◽  
pp. 1681-1693 ◽  
Author(s):  
Braz Calderano Filho ◽  
Helena Polivanov ◽  
César da Silva Chagas ◽  
Waldir de Carvalho Júnior ◽  
Emílio Velloso Barroso ◽  
...  

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-21
Author(s):  
Jayant Gupta ◽  
Carl Molnar ◽  
Yiqun Xie ◽  
Joe Knight ◽  
Shashi Shekhar

Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-E approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.


Author(s):  
Jason K. Ostanek

In much of the public literature on pin-fin heat transfer, Nusselt number is presented as a function of Reynolds number using a power-law correlation. Power-law correlations typically have an accuracy of 20% while the experimental uncertainty of such measurements is typically between 5% and 10%. Additionally, the use of power-law correlations may require many sets of empirical constants to fully characterize heat transfer for different geometrical arrangements. In the present work, artificial neural networks were used to predict heat transfer as a function of streamwise spacing, spanwise spacing, pin-fin height, Reynolds number, and row position. When predicting experimental heat transfer data, the neural network was able to predict 73% of array-averaged heat transfer data to within 10% accuracy while published power-law correlations predicted 48% of the data to within 10% accuracy. Similarly, the neural network predicted 81% of row-averaged data to within 10% accuracy while 52% of the data was predicted to within 10% accuracy using power-law correlations. The present work shows that first-order heat transfer predictions may be simplified by using a single neural network model rather than combining or interpolating between power-law correlations. Furthermore, the neural network may be expanded to include additional pin-fin features of interest such as fillets, duct rotation, pin shape, pin inclination angle, and more making neural networks expandable and adaptable models for predicting pin-fin heat transfer.


Sign in / Sign up

Export Citation Format

Share Document