scholarly journals Application of the modified handmade cloning technique to pigs

2021 ◽  
Vol 63 (2) ◽  
pp. 281-294
Author(s):  
Eun Ji Lee ◽  
Kuk Bin Ji ◽  
Ji Hye Lee ◽  
Hyun Ju Oh ◽  
Tae Young Kil ◽  
...  
2008 ◽  
Vol 20 (1) ◽  
pp. 95
Author(s):  
C. Feltrin ◽  
A. S. Lima ◽  
M. Monaco ◽  
S. M. Wilson ◽  
D. Kim ◽  
...  

The goal of this experiment was to compare different fusion parameters in the handmade cloning technique to produce cloned swine embryos. After in vitro maturation of 618 oocytes, 431 (69.8%) presented a visible polar body and were used in the experiment. The next step was the removal of the cumulus oophorus cells and the digestion of the zona pellucida using pronase (5 mg mL–1) in HEPES TCM199. Oocytes were then exposed to a medium containing cytochalasin B (5 µg mL–1) for 15 min before being bisected with a hand-held blade. The bisected oocytes (cytoplasts) were then placed in medium supplemented with Hoechst 33342 and exposed to UV light to select cytoplasts without metaphase II plates. Next, two cytoplasts and a mesenchymal stem cell (nucleus donor) were pushed together in a phytohemagglutinin (550 µg mL–1) solution. Once adhered, these structures were divided into 3 groups (G) to be fused using different parameters: (G1) 2 pulses (DC) of 0.6 kV cm–1 for 30 µs, (G2) 2 pulses (DC) of 0.9 kV cm–1 for 30 µs, and (G3) 2 pulses (DC) of 1.2 kV cm–1 for 30 µs. For all three groups, 0.3 m of mannitol solution (without calcium) was used in the fusion chamber, and an initial pre-pulse (AC) of 10V for 15 s was performed to permit the alignment of 100% of the cytoplast-donor cell structures. After fusion, reconstructed embryos were activated in 0.3 m mannitol and 0.1 mm calcium in the fusion chamber using 2 pulses of 0.9 kV cm–1 for 30 µs followed by incubation in 10 µg mL–1 of cycloheximide solution for 4 h. Afterwards, the reconstructed embryos were transferred to NCSU23 medium supplemented with amino acids (nonessential and essential) and 0.4% bovine serum albumin. The embryos were cultured at 39�C in a 100% humidified atmosphere containing 5% CO2, 5% O2, and 90% N2. Cleavage rates were evaluated after 48 h of culture. For G1, the fusion rate was 43% (25/58) with 72% cleavage (18/25), the G2 fusion rate was 87% (56/64) with 80% cleavage (45/56), and the G3 fusion rate was 79% (53/67) with 69% cleavage (37/53). Statistical analysis was performed using the chi-square test. There were no significant differences in fusion rates between groups G2 and G3, but the fusion rate of these groups was significantly different from that of G1 (P < 0.05). No significant differences in cleavage rate were observed among the three groups. In conclusion, fusion using 2 pulses at either 0.9 or 1.2 kV cm–1 for 30 µs was more efficient for embryo reconstruction in the handmade cloning technique compared to that using 2 pulses at 0.6 kV cm–1 for 30 µs. Further studies need to be performed to improve cleavage rates and assess development to the blastocyst stage.


2005 ◽  
Vol 17 (2) ◽  
pp. 284
Author(s):  
P.M. Kragh ◽  
N.R. Mtango ◽  
T.J. Corydon ◽  
L. Bolund ◽  
H. Callesen ◽  
...  

Activation is a crucial step in mammalian somatic cell nuclear transfer (SCNT). Recently we described the application of the handmade cloning technique for porcine SCNT that uses oocytes without zonaa pellucidae (zona-free) in a micromanipulation-independent procedure (Kragh et al. 2004 Reprod. Fertil. Dev. 16, 315–18). The purpose of the present study was to investigate the effect of a combined electrical and chemical activation of zona-free porcine oocytes. Cumulus-oocyte complexes were aspirated from ovaries of sows and matured for 41 h. Subsequently, the cumulus cells were removed by the addition of 1 mg/mL hyaluronidase in HEPES-buffered TCM-199. For zonae pellucidae removal, oocytes were incubated in 8 mg/mL pronase in HEPES-buffered TCM-199 supplemented with 20% cattle serum for 10 s. Three independent experiments with four treatments were conducted, and oocytes were activated by a combined electrical and chemical activation. Oocytes were washed once in activation medium (0.3 M mannitol, 0.1 mM MgSO4, 0.1 mM CaCl2, and 0.01% polyvinyl alcohol) and transferred to a chamber with two wires (0.5-mm separation) covered with activation medium. After the electrical pulse, oocytes were incubated in culture medium (NCSU-37 containing 4 mg/mL BSA) supplemented with 5 μg/mL cytochalasin B and 10 μg/mL cycloheximide for 6 h. Activated oocytes were cultured in culture medium using the wells of wells system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256–64) in the submarine incubation system (Vajta et al. 1997 Theriogenology 48, 1379–85). The rate of development into blastocysts was checked on Day 7 of culture. In treatment 1, zona pellucida-intact oocytes were first activated by a single DC pulse of 1.25 kV/cm for 80 μs, and subsequently cultured in cytochalasin B and cycloheximide for 6 h. In treatments 2 and 3, oocytes without zonae pellucidae were activated by a single DC pulse of 1.25 and 0.85 kV/cm for 80 μs, respectively, and subsequently cultured in cytochalasin B and cycloheximide for 6 h. In treatment 4, oocytes without zonae pellucidae were bisected by hand under a stereomicroscope using a microblade in 5 μg/mL cytochalasin B in TCM-199 supplemented with 15 mg/mL BSA, re-fused/activated by a single DC pulse of 1.25 kV/cm for 80 μs in activation medium, and cultured in cytochalasin B and cycloheximide for 6 h. The rates of blastocyst formation from activated oocytes (mean ± SEM) in treatments 1, 2, 3, and 4 were 55 ± 4%, 40 ± 2%, 49 ± 1%, and 41 ± 8%, respectively. In conclusion, the combined electrical and chemical activation efficiently induced parthenogenetic development of zona-free oocytes. Also, a more authentic control model for activation during SCNT was established by activating and producing blasctocysts from re-fused bisected oocytes.


2007 ◽  
Vol 68 (8) ◽  
pp. 1104-1110 ◽  
Author(s):  
Y. Du ◽  
P.M. Kragh ◽  
Y. Zhang ◽  
J. Li ◽  
M. Schmidt ◽  
...  

2005 ◽  
Vol 7 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Y. Du ◽  
P.M. Kragh ◽  
X. Zhang ◽  
S. Purup ◽  
H. Yang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 40 (11) ◽  
pp. 852-862
Author(s):  
Lídia dos Santos Pereira ◽  
Mirna R. Porto ◽  
Janildo L. Reis Júnior ◽  
Rodolfo Rumpf ◽  
Edson R. Silva Júnior ◽  
...  

ABSTRACT: Somatic-cell nuclear transfer is a cloning technique that enables the creation of a viable embryo from a donor adult to produce a genetically identical individual. This technique opens numerous potential possibilities for medicine and animal reproduction. However, several reports have documented cloning-related issues. Embryo and fetal losses remain significantly higher than in other techniques, and there is a high incidence of dystocia and hydrops, which decreases efficiency and increases costs. Animals delivered at term often exhibit a syndrome known as macrosomia and experience difficulties in adapting to life outside the uterus, and death is a common outcome. In the present study, 41 cloned calves that died in the neonatal period were subjected to gross and histopathological examination. Most important gross lesions were found in the liver (enlargement, congestion, yellowish color), kidneys (brownish color at surface and cut, and cysts), lungs (atelectasis, parenchymal consolidation, and secretions in bronchi and bronchioles), and heart (concentric and eccentric hypertrophy, hematic cysts, persistence of ductus arteriosus). Primary microscopic findings were seen in the liver, kidneys, and lungs from neonatal calves. In the liver, 85% of the animals exhibited hepatic degeneration. The presence of a brownish pigment within the cortical tubules of the kidneys was found in approximately 90% of the samples; the presence of this pigment has not been previously reported in cloned calves. In the lungs, a large number of animals exhibiting lesions characteristic of pneumonia (55%). These changes were the pivotal causes of death, mainly due to problems in adapting to life outside the uterus and opportunistic infections in the neonatal period. Further investigation focusing on pathological anatomical changes is necessary to map these abnormalities in cloned animals.


2007 ◽  
Vol 6 (16) ◽  
pp. 1862-1868 ◽  
Author(s):  
Salim l Elsheikh Adil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document