29 EVALUATION OF DIFFERENT FUSION PARAMETERS IN THE RECONSTRUCTION OF SWINE HANDMADE CLONING EMBRYOS

2008 ◽  
Vol 20 (1) ◽  
pp. 95
Author(s):  
C. Feltrin ◽  
A. S. Lima ◽  
M. Monaco ◽  
S. M. Wilson ◽  
D. Kim ◽  
...  

The goal of this experiment was to compare different fusion parameters in the handmade cloning technique to produce cloned swine embryos. After in vitro maturation of 618 oocytes, 431 (69.8%) presented a visible polar body and were used in the experiment. The next step was the removal of the cumulus oophorus cells and the digestion of the zona pellucida using pronase (5 mg mL–1) in HEPES TCM199. Oocytes were then exposed to a medium containing cytochalasin B (5 µg mL–1) for 15 min before being bisected with a hand-held blade. The bisected oocytes (cytoplasts) were then placed in medium supplemented with Hoechst 33342 and exposed to UV light to select cytoplasts without metaphase II plates. Next, two cytoplasts and a mesenchymal stem cell (nucleus donor) were pushed together in a phytohemagglutinin (550 µg mL–1) solution. Once adhered, these structures were divided into 3 groups (G) to be fused using different parameters: (G1) 2 pulses (DC) of 0.6 kV cm–1 for 30 µs, (G2) 2 pulses (DC) of 0.9 kV cm–1 for 30 µs, and (G3) 2 pulses (DC) of 1.2 kV cm–1 for 30 µs. For all three groups, 0.3 m of mannitol solution (without calcium) was used in the fusion chamber, and an initial pre-pulse (AC) of 10V for 15 s was performed to permit the alignment of 100% of the cytoplast-donor cell structures. After fusion, reconstructed embryos were activated in 0.3 m mannitol and 0.1 mm calcium in the fusion chamber using 2 pulses of 0.9 kV cm–1 for 30 µs followed by incubation in 10 µg mL–1 of cycloheximide solution for 4 h. Afterwards, the reconstructed embryos were transferred to NCSU23 medium supplemented with amino acids (nonessential and essential) and 0.4% bovine serum albumin. The embryos were cultured at 39�C in a 100% humidified atmosphere containing 5% CO2, 5% O2, and 90% N2. Cleavage rates were evaluated after 48 h of culture. For G1, the fusion rate was 43% (25/58) with 72% cleavage (18/25), the G2 fusion rate was 87% (56/64) with 80% cleavage (45/56), and the G3 fusion rate was 79% (53/67) with 69% cleavage (37/53). Statistical analysis was performed using the chi-square test. There were no significant differences in fusion rates between groups G2 and G3, but the fusion rate of these groups was significantly different from that of G1 (P < 0.05). No significant differences in cleavage rate were observed among the three groups. In conclusion, fusion using 2 pulses at either 0.9 or 1.2 kV cm–1 for 30 µs was more efficient for embryo reconstruction in the handmade cloning technique compared to that using 2 pulses at 0.6 kV cm–1 for 30 µs. Further studies need to be performed to improve cleavage rates and assess development to the blastocyst stage.

2006 ◽  
Vol 18 (2) ◽  
pp. 148
Author(s):  
J. G. Zhao ◽  
X. Y. Yang ◽  
H. F. Liu ◽  
H. Li ◽  
S. Z. Huang ◽  
...  

Faithful reprogramming ensures the proper activation of genes during embryonic development of the somatic cell nuclear transfer (NT) in bovine. It is unambiguous that all these remodeling factors are presented in the oocyte cytoplasm (Du et al. 2002 Mol. Reprod. Dev. 63, 183–191). It will be interesting to determine if the recipient cytoplasms derived from individuals have different development ability and reprogramming competence during NT. Oocytes recovered by Ovum pickup from five Holstein heifers at 14 months of age were used as recipient cytoplasms. Cultured granulosa cells of the same origin were used as donor cells. Oocytes were enucleated at 20 h post-maturation and a single donor cell was transferred into the perivitelline space of a recipient oocyte. After fusion and activation, the reconstructed embryos were cultured in B2 medium (Laboratoire CCD, Paris, France) on a monolayer of Vero cells for 7 days. The oocyte number, development ability, and NT efficiency of recipient cytoplasm derived from each individual were compared (Table 1). Differences among individuals were verified using a chi-square test, SAS 6.12 version (SAS Institute, Cary, NC, USA). There were significant differences of survival after fusion and the rate of development to the blastocyst stage for embryos reconstructed with recipient cytoplasm from five different individual heifers (P < 0.05). However, maturation rate, fusion rate and cleavage rate of embryos reconstructed with recipient cytoplasm from five different individual heifers presented no significant differences (P > 0.05). Reconstructed embryos with recipient cytoplasm from one heifer (03025) showed a lower survival after fusion (61% vs. 80%, 86%, 77%, 91%) but a higher ability to develop to blastocyst stage (61% vs. 24%, 31%, 52%, 31%) than the embryos from the other four heifers. The current study showed that recipient cytoplasm from various individuals may present great differences in developmental ability in nuclear transfer. This may result from different compatibility between nucleus and mitochondria or the content of maternal RNA as well as proteins in the oocyte. Further studies are needed to elucidate the genetic factors that affect the reprogramming in nuclear transfer. Table 1. Nuclear transfer efficiency with various individual recipient cytoplasms


2010 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
L.-Y. Sung ◽  
C.-H. Chen ◽  
T.-A. Lin ◽  
L.-J. Sung ◽  
H.-Y. Su ◽  
...  

This study was designed to examine the effect of rabbit oocytes collected from oviducts v. follicles on the developmental potential of nuclear transplant (NT) embryos. Rabbit oocytes were flushed from the oviducts (oviduct oocytes) or collected from the ovarian Graafian follicles(follicular oocytes) of superovulated does at 12 h post-hCG injection (hpi). Cumulus cells were then removed from the oocytes by incubation in 0.5% hyaluronidase and pipetting. Oocyte enucleation was conducted in TCM-199 +10% fetal bovine serum (FBS) and confirmed under fluorescent microscopy. Skin fibroblasts from an adult rabbit were prepared and cultured to passage 8 to 10 before use as nuclear donors. A donor cell with a diameter of approximately 15 to 19 μm was transferred into the perivitelline space of an enucleated oocyte and subsequently fused with the recipient oocyte by applying 3 direct current pulses at 3.2 kV cm-1 for 20 μs per pulse. Fused oocytes were activated by the same electrical stimulation described above, and then cultured in TCM-199 + 10% FBS containing 2.0 mM 6-DMAP and 5 μg mL-1 cycloheximide for 1 h. Cloned embryos were cultured in 2.5% FBS B2 medium in 5% CO2 and 95% humidified air at 38.5°C for 3 d. Embryo development to cleavage (2- to 4-cell), 8-cell, and morula/blastocyst (Mor/BL) stages was evaluated. The data were analyzed by the General Linear Model procedure (SPSS 11.0, SPSS Inc., Chicago, IL, USA).The total number of oocytes collected per animal was 27.6 ± 1.3, with 47.8% from oviducts, and 52.2% from follicles. The percentage of oviduct oocytes that showed the first polar body was 98.3% (n = 150) at the time of collection, whereas follicular oocytes only had 54.8% at collection (n = 93), but it reached 92.4% when immature follicular oocytes were cultured for 3 h in vitro. The enucleation rates were similar between the follicular (82.7%) and the oviduct (79.1%) groups. Table 1 shows that a significantly higher fusion rate was found in follicular oocytes compared with that in the oviduct group (90.8 v. 63.4%; P < 0.05). There was no difference in the cleavage rate and Mor/BL development between the 2 groups, although the 8-cell(78.4 v. 63.9%; P = 0.11) and the overall efficiencies (30.6% v. 17.9%; P = 0.14) appeared higher in the follicular group. These results demonstrated that rabbit follicular oocytes at 12 hpi have potential equivalent or maybe better (fusion) than that with oviduct oocytes for promoting the preimplantational development of NT embryos. Table 1.The effect of follicular and oviduct oocytes on the development of rabbit NT embryos Supported by NIH1R43 RR023774-01A1 and 5R44HL091605-03.


2009 ◽  
Vol 21 (1) ◽  
pp. 128 ◽  
Author(s):  
N. A. Wani ◽  
J. A. Skidmore ◽  
U. Wernery

Experiments were conducted to study the in vitro development of reconstructed dromedary camel embryos after nuclear transfer by a modified zona-free method. Cumulus oocyte complexes, collected from slaughterhouse ovaries were cultured in TCM199 at 38.5°C in an atmosphere of 5% CO2 in air for 32 to 36 h. Matured oocytes were denuded of cumulus cells by repeated pipetting and the zona pellucida was removed by brief incubation in 5 mg mL–1 pronase dissolved in Ca- and Mg-free PBS. Zona-free oocytes were stained with 5 mg mL–1 Hoechst 33342 in H199 supplemented with 7.5 μg mL–1 cytochalasin B and 10% FCS. They were enucleated under constant UV-light exposure in H199 supplemented with cytochalasin B and 10% FCS. The granulosa cells at passage numbers 4 to 15 were used as nuclear donors. The zona-free cytoplasts were individually washed for a few seconds in 300 μg mL–1 of Phytohemagglutinin in H199, then quickly dropped on a single donor cell settled to the bottom of a drop of H199 with 0.5% FCS and pushed together with the mouth pipette. Couplets were electrically fused, at room temperature, with two DC pulses of 100 V cm–1 for 15 μs. Reconstructs were activated 2 h post-fusion, with 5 μm ionomycin for 3 min followed by culture in 6-diethylaminopurine for 4 h. The reconstructs were then cultured individually in either 5 μL drops under oil, in agar wells or in wells of wells (WOW) in a well of 4-well culture plate. Embryo culture medium consisted of TCM-199 supplemented with 0.15 mg mL–1 L-glutamine, 2.1 mg mL–1 sodium bicarbonate, 0.22 mg mL–1 pyruvate, 50 μg mL–1 gentamycine, 1% insulin-transferrin-selenium (ITS), and 15% estrous dromedary serum. The number of oocytes that had cleaved was recorded on day 2, whilst those developing to morulae and blastocysts were recorded on day 7 of culture. For cell count, the blastocysts were stained with Hoechst and cells counted under a fluorescent microscope at ×400. Data obtained was analysed by chi-square test. About 92% (349/380) of the oocytes were successfully enucleated and 76% (259/340) fused with the attached cells. The cleavage rate was significantly lower (P < 0.05) in reconstructed embryos cultured in droplets (10/72, 14%) as compared with those cultured in agar wells (37/87, 42%) or WOW system (42/96, 44%). The proportions of cleaved embryos reaching morula stage were 0, 83, and 89% in droplets, agar wells, and WOW, respectively. However, only 8% and 5% of the cleaved embryos developed to the blastocyst stage in the agar well and WOW culture systems, respectively. No difference was observed in the cell number of blastocysts produced in agar wells (77.3 ± 8.02) or WOW (78.0 ± 4.2) culture system. To the best of our knowledge, this is the first report of embryo production up to the blastocyst stage after NT in camelids and it shows that NT can be successfully applied for embryo production in camelids. Further studies are needed to optimize the parameters and to improve the efficiency for production of transferable blastocysts in this species. This study was kindly sponsored by H.H. General Sheikh Mohammed bin Rashid Al Maktoum, Ruler of Dubai.


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


2007 ◽  
Vol 19 (1) ◽  
pp. 184 ◽  
Author(s):  
T. Somfai ◽  
M. Ozawa ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

The present study investigated the ability of in vitro-matured (IVM) porcine oocytes to be fertilized in vitro after vitrification. Oocytes matured in vitro for 46 h according to Kikuchi et al. (2002 Biol. Reprod. 66, 1033–1041) were cryopreserved by solid surface vitrification (SSV; Dinnyes et al. 2000 Biol. Reprod. 63, 513–518) or subjected to the steps of SSV without cooling (toxicity control, TC). Oocyte viability was assessed 2 h after treatment by morphology and fluorescein diacetate staining. Live oocytes were in vitro-fertilized (IVF) and cultured (IVC) for 6 days according to Kikuchi et al. (2002). Fertilization and pronuclear development of oocytes were assessed 10 h after IVF by aceto-orcein staining. Cleavage and blastocyst rates were recorded during IVC. Glutathione (GSH) and hydrogen peroxide levels in oocytes were analyzed by DTNB-glutathione disulfide reductase recycling assay and 20,70-dichlorofluorescein fluorescence assay, respectively. Data were analyzed by ANOVA and paired t-test. The rate of live oocytes after SSV was lower compared to the control and the TC groups (54.4%, 100%, and 100%, respectively; P &lt; 0.05). Sperm penetration rates of SSV oocytes were lower than those of the control group (51.9% and 67.8%, respectively; P &lt; 0.05). Significantly fewer penetrated oocytes in the SSV group formed male pronuclei than those in the control and the TC groups (66.7%, 96.5%, and 98.5%, respectively; P &lt; 0.05). There were no differences in second polar body extrusion and monospermy rates between the treatment groups. The cleavage rate of SSV oocytes was significantly lower than that of the control and the TC groups (13.3%, 46.6%, and 47.7%, respectively; P &lt; 0.05). Blastocyst rates of control and TC oocytes were similar (20.7% and 23.6%, respectively), whereas only a single embryo developed to the blastocyst stage in the SSV group. GSH content of SSV oocytes was significantly lower than that of the control oocytes (7.3 pM and 10.5 pM, respectively), whereas the peroxide level was higher in SSV oocytes than in the control oocytes (59.0 and 50.5 FIU, respectively; P &lt; 0.05). Our results reveal a cryopreservation-related drop of intracellular GSH level in oocytes, which may cause their decreased ability to form a male pronucleus and their increased sensitivity to oxidative stress. These factors might contribute to the low developmental competence of vitrified oocytes. This work was supported by a grant-in-aid for the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers (P05648) and the Bilateral Scientific and Technological Collaboration Grant between Hungary and Japan (TET, no. JAP-11/02).


2005 ◽  
Vol 17 (2) ◽  
pp. 188
Author(s):  
J.G. Zhao ◽  
X.Y. Yang ◽  
Y. Huang ◽  
H.F. Liu ◽  
H. Li ◽  
...  

The objective of this study was to determine the effects of genetic manipulation, cell type, and culture conditions on developmental potential of bovine nuclear transfer (NT) embryos. Ovum pickup (OPU) technology was developed to obtain the oocytes for NT. A total 4044 cumulus-oocyte complexes (COCs) were obtained during 492 OPU sessions, with an average of 8.2 COCs recovered each session. Cultured granulosa cells (CGC), bovine fetal (150 days) oviduct epidermic cells (FOEC), and adult ear skin fibroblasts (ASFC) were used as donor cells for NT and were transfected with the expression vector including human FIX coding sequence directed by goat β-casein promoter and neomycin gene. The cells were screened under 800 μg mL−1 G418 for 10–14 days until the apperance of a “mono-colony” of cells which were then picked. Each cell population was expanded by consecutive passage culture under 300 μg mL−1 G418 until used for NT, ensuring that the majority of cells were transgenic. Oocytes were enucleated at 20 h post-maturation and a single donor cell was transferred into the perivitelline space of a recipient oocyte. After fusion and activation, the reconstructed embryos were co-cultured with vero cells in B2 medium for 7 days. NT efficiency between primary granulosa cells (PGC) without in vitro culture and CGC, as well as among CGC, FOEC and ASFC that were transfected with exogenous DNA (named TCGC, TFOEC, TASFC, respectively), were compared (Table 1). Differences between groups were verified by chi-square test using SAS 6.12 (SAS Institute, Inc., Cary, NC, USA) program. CGCs presented a higher fusion rate (P < 0.01) for reconstructed embryos and higher development to the blastocyst stage for NT embryos than did PGC (67% vs. 54% and 41% vs. 21%, respectively). There were no significant differences (P > 0.05) in cleavage rate (65%, 71%, and 69%, respectively) and development to the blastocyst stage for NT embryos (36%, 30% and 40%, respectively) for TCGC, TFOEC, and TASFC. A total of 86 blastocysts were selected for transfer into uteri of 86 cows, resulting in 26 pregnancies (30%) at 60 days by ultrasound scanning. Among these, 12 cows remain pregnant and 14 have aborted. The results indicated that oocytes recovered from OPU can be successfully used for NT with development to the blasocyst stage. PGC, CGC, FOEC, and ASFC can all be used for generating transgenic cattle by NT, although this needs to be verified by the birth of live calves. Table 1. Nuclear transfer efficiency with various cell types This work was supported by the Chinese “863” High-Tech Plan Program (Grant No. 2002AA206201).


2007 ◽  
Vol 19 (1) ◽  
pp. 158
Author(s):  
R. Rungsiwiwut ◽  
A. Thongphakdee ◽  
P. Numchaisrika ◽  
P. Virutamasen ◽  
M. Techakumphu

Mouse cloning can be performed by a direct microinjection of donor nuclei using a conventional or a piezo-actuated technique (Rybouchkin et al. 2002 Reproduction 124, 197–207; Wakayama et al. 1998 Nature 394, 369–374). However, a high percentage of lysed oocytes was observed during the pipette penetration of the cytoplasmic membrane through the zona pellucida. The aim of this experiment was to investigate the possibility of a combination of a laser-assisted zona opening and electro-fusion for mouse cloning. Mature oocytes were obtained from FSH-superovulated B6D2F1 female mice. Enucleation and transfer of donor cell were performed in HEPES-buffered CZB medium. Spindle-chromosome complexes (SCCs) together with first polar body were removed by blunt-end pipette via a small hole in the zona pellucida which was cut by a laser beam. An adult fibroblast cell was introduced into the perivitelline space and fused to the enucleated oocyte by using a single DC pulse of 1.5 kV cm-1, 20 �s, in a fusion medium (Liu and Aoki 2003 Animal Sci. J. 75, 125–129). The fusion rate was checked 30 min later and only the fused oocytes were subjected to activation by 6 h culture in Ca2+-free CZB medium supplemented with 10 mM Sr2+ and 5 �g mL-1 cytochalasin B. The oocytes which presented the pseudo-pronuclei were considered as the activated oocytes and were cultured in CZB medium at 37�C, 5% CO2 in humidified atmosphere. The developmental rate was observed every 24 h for 4 days. The diploid parthenogenetically activated embryos serving as a control were obtained using the same activation protocol but without SCC removal. The percentages of survival after enucleation and after fusion were recorded. The formation of pseudo-pronuclei and the embryos developing to a particular stage were determined by chi-square analysis. The results show that most of the oocytes survived after enucleation (92.5%, 172/186) and the fusion rate was 71.9% (105/146). The formation of pseudo-pronuclei and the cleavage rate of cloned embryos was lower than in the control (87.6% (92/105) vs. 100% (90/90) and 69.6% (64/92) vs. 92.2% (83/90), respectively). The developmental rate to morula–blastocyst stage of cloned embryos was significantly lower than in the control [1.1% (1/92) vs. 44.4% (40/90); P &lt; 0.05]. These results indicate that using laser-assisted zona opening and electro-fusion technique is practical for mouse cloning and provides an alternative method when injection of donor nuclei into the recipient oocytes using a conventional or a piezo-driven method is technically difficult. This study was supported by grants from The National Research Council of Thailand and The Thailand Research Fund (Loyal Golden Julilee Ph.D. program).


2007 ◽  
Vol 19 (1) ◽  
pp. 146
Author(s):  
P. M. Kragh ◽  
Y. Du ◽  
J. Li ◽  
Y. Zhang ◽  
L. Bolund ◽  
...  

Somatic cell nuclear transfer (SCNT) offers the possibility of pig transgenesis. Importantly, genetic manipulations can be performed in cells isolated from special breeds followed by SCNT into enucleated oocytes isolated from slaughterhouse ovaries. In the present study, we established production of Yucatan blastocysts by the handmade cloning (HMC) technique using non-transgenic fibroblasts from the Yucatan miniature pig, and produced transgenic blastocysts using enhanced green fluorescent protein (EGFP)-positive Yucatan fetal fibroblasts. For transgenesis, Yucatan fibroblasts from a 40-day old fetus were transfected with a vector containing an EGFP gene and a neomycin-resistance selection gene by lipofection. Well separated neomycin-resistant colonies were isolated, expanded, and used for HMC. For HMC, cumulus–oocyte complexes were aspirated from ovaries of slaughterhouse sows and matured for 41 h. Subsequently, the cumulus cells were removed in hyaluronidase, and zonae pellucidae were partially digested by incubation in pronase. Oocytes with a visible polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm adjacent to the PB was removed with a microblade. The remaining parts, i.e. cytoplasts, were used as recipients for embryo reconstruction. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused with one fibroblast in the absence of Ca2+. After one h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously in the presence of Ca2+, and subsequently cultured in cytochalasin B and cycloheximide for 4 h. The development of reconstructed embryos to the blastocyst stage was determined after 7 days of in vitro culture. When using non-transgenic and EGFP-positive Yucatan fetal fibroblasts, the rate of blastocyst formation (mean � SEM) were 36 � 7% (36/102) and 42 � 7% (32/77), respectively. In conclusion, the HMC technique was very efficient for production of blastocysts of Yucatan miniature pig origin using both non-transgenic and EGFP-positive fetal fibroblasts.


2008 ◽  
Vol 20 (1) ◽  
pp. 145
Author(s):  
H. J. Kim ◽  
S. R. Cho ◽  
C. Y. Choe ◽  
S. H. Choi ◽  
D. S. Son ◽  
...  

The objective of this study was to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as a non-invasive marker to know the developmental competence in advance. Porcine oocytes matured for 48 h and then examined for polar body extrusion. The examined oocytes were matured for an additional 16–18 h, activated with 7% ethanol, and cultured in 5 µg mL–1 cytochalasin B for 5 h for diploid formation. The treated oocytes were examined for cleavage after 48 h and continued culturing for 5 days. Each treatment was replicated by 3–4 times. Oocytes of 21.9% (70/320) were discarded in morphological selection, and 32.1% (167/520) oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated, and after 48 h, the cleavage rate was examined. In morphologically selected oocytes, 15.8% (30/190) were not cleaved, 52.6% (100/190) were normally cleaved (consisted of 2–7 cells), and 31.6% (60/190) were hyper-cleaved (consisted of 8 cells or more) at 48 h after activation. However, in the first polar body extruded oocytes, 7.1% (18/253) were not cleaved, 73.1% (185/253) were normally cleaved, and 19.8% (50/253) were hyper-cleaved. From the morphologically selected oocytes, 16.7% (10/60) were developed up to blastocyst stage from those in which cleavage selection was not performed and 31.7% (19/60) from those in which cleavage selection was performed. From the polar body extruded oocytes, 39.0% (39/100) were developed up to blastocyst stage from those in which cleavage selection was not performed and 49.0% (49/100) from those in which cleavage selection was performed. Cleavage was examined within 12 h interval after activation (0 = time of activation) up to 48 h. At 0–12, 12–24, 24–36, and 36–48 h intervals, 4.1% (9/220), 68.6% (151/220), 19.1% (42/220), and 2.3% (5/220) oocytes were cleaved, respectively, and 5.9% (13/220) oocytes were not cleaved at 48 h after activation. The cleaved embryos in each interval were cultured and developed up to blastocyst with 0 (0/9), 39.1 (59/151), 9.5 (4/42), and 0% (0/5), respectively. This result suggests that the polar body extruded and cleaved at 12–36 h embryo has higher developmental potential than the others.


2007 ◽  
Vol 19 (1) ◽  
pp. 134
Author(s):  
P. Q. Cong ◽  
E. S. Song ◽  
E. S. Kim ◽  
Z. H. Li ◽  
Y. J. Yi ◽  
...  

Pigs have become increasingly important in the field of biomedical research, and interest has grown in the use of transgenic cloned pigs as potential xenograft donors. The present study were carried out to investigate the effects of intensity of DC pulse, number of DC pulses, and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. Porcine cumulus-oocyte complexes (COCs) were cultured in modified TCM-199 (mTCM-199) medium for 44 h at 38.5�C, 5% CO2 in air. After in vitro maturation (IVM), metaphase II oocytes were selected for enucleation. Porcine fetal fibroblasts were obtained from a porcine fetus on Day 35 of gestation as donor cells. Oocytes were enucleated by removing, with a micropipette, the first polar body along with adjacent cytoplasm containing the metaphase plate; then a donor cell was injected in contact with the cytoplasm of each oocyte. In experiment 1, several different fusion/activation intensities (two DC pulses of 0.4, 0.8, 1.2, 1.6, and 2.0 kV cm-1 for 30 �s) were carried out to investigate the effect on the development of nuclear transfer embryos. In experiment 2, the reconstructed oocytes were fused and activated with 1, 2, or 3 DC pulses of 1.2 kV cm-1 for 30 �s. In experiment 3, reconstructed oocytes were equilibrated in mTCM-199 medium at 38.5�C, 5% CO2 for 0, 1, 2, 3, 4, 5, and 6 h. After equilibration, the reconstructed oocytes were fused and activated with one DC pulse of 1.2 kV cm-1 for 30 �s in fusion medium. The reconstructed embryos were transferred into PZM-3 medium containing 0.3% BSA for further culture. The rates of embryo cleavage and development of blastocyst stage were evaluated at 48 h and 6-7 days, respectively. The cell numbers of blastocysts were counted by using Hoechst 33342 epifluorescence staining. Data were analyzed by ANOVA and Duncan


Sign in / Sign up

Export Citation Format

Share Document