scholarly journals Reducing inappropriate arterial blood gas testing in a level III intensive care unit: a before-and-after observational study

2020 ◽  
Vol 22 (4) ◽  
pp. 370-377
Author(s):  
Oliver M Walsh ◽  
◽  
Katelyn Davis ◽  
Jonathan Gatward ◽  
◽  
...  

Background: Arterial blood gas (ABG) analysis is the most frequently performed test in intensive care units (ICUs), often without a specific clinical indication. This is costly and contributes to iatrogenic anaemia. Objectives: To reduce the number of ABG tests performed and the proportion that are inappropriate. Design, setting and participants: The indications for ABG analysis were surveyed at a 58-bed level III ICU during fortnightly periods before and after a multifaceted educational intervention which included the introduction of a clinical guideline. The number of ABG tests performed during the period July–December 2017 was compared with that for the period July–December 2018. Tests were predefined as inappropriate if performed at regular time intervals, at change of shift, concurrently with other blood tests or after a treatment was ceased on a stable patient or after ventilatory support or oxygen delivery was decreased in an otherwise stable patient. The study was enrolled on the Quality Improvement Projects Register and ethics approval was waived by the local ethics committee. Results: There was a 31.3% bed-day adjusted decrease in number of ABG tests performed (33 005 v 22 408; P < 0.001), representing an annual saving of A$770 000 and 100 litres of blood. The proportion of inappropriate ABG tests decreased by 47.3% (54.2% v 28.6%; P < 0.001) and the number of inappropriate ABG tests per bed-day decreased by 71% (2.8 v 0.8; P < 0.001). Patient outcomes before and after the intervention did not differ (standardised mortality ratio, 0.65 v 0.63; P = 0.22). Conclusion: Staff education and implementation of a clinical guideline resulted in substantial decreases in the number of ABG tests performed and the proportion of inappropriate ABG tests.

Author(s):  
Lukasz Krzych ◽  
Olga Wojnarowicz ◽  
Paweł Ignacy ◽  
Julia Dorniak

Introduction. Reliable results of an arterial blood gas (ABG) analysis are crucial for the implementation of appropriate diagnostics and therapy. We aimed to investigate the differences (Δ) between ABG parameters obtained from point-of-care testing (POCT) and central laboratory (CL) measurements, taking into account the turnaround time (TAT). Materials and methods. A number of 208 paired samples were collected from 54 intensive care unit (ICU) patients. Analyses were performed using Siemens RAPIDPoint 500 Blood Gas System on the samples just after blood retrieval at the ICU and after delivery to the CL. Results. The median TAT was 56 minutes (IQR 39-74). Differences were found for all ABG parameters. Median Δs for acid-base balance ere: ΔpH=0.006 (IQR –0.0070–0.0195), ΔBEef=–0.9 (IQR –2.0–0.4) and HCO3–act=–1.05 (IQR –2.25–0.35). For ventilatory parameters they were: ΔpO2=–8.3 mmHg (IQR –20.9–0.8) and ΔpCO2=–2.2 mmHg (IQR –4.2––0.4). For electrolytes balance the differences were: ΔNa+=1.55 mM/L (IQR 0.10–2.85), ΔK+=–0.120 mM/L (IQR –0.295–0.135) and ΔCl–=1.0 mM/L (IQR –1.0–3.0). Although the Δs might have caused misdiagnosis in 51 samples, Bland-Altman analysis revealed that only for pO2 the difference was of clinical significance (mean: –10.1 mmHg, ±1.96SD –58.5; +38.3). There was an important correlation between TAT and ΔpH (R=0.45, p<0.01) with the safest time delay for proper assessment being less than 39 minutes. Conclusions. Differences between POCT and CL results in ABG analysis may be clinically important and cause misdiagnosis, especially for pO2. POCT should be advised for ABG analysis due to the impact of TAT, which seems to be the most important for the analysis of pH.


Author(s):  
Nazlıhan Boyacı ◽  
Sariyya Mammadova ◽  
Nurgül Naurizbay ◽  
Merve Güleryüz ◽  
Kamil İnci ◽  
...  

Background: Transcutaneous partial pressure of carbon dioxide (PtCO2) monitorization provides a continuous and non-invasive measurement of partial pressure of carbon dioxide (pCO2). In addition, peripheral oxygen saturation (SpO2) can also be measured and followed by this method. However, data regarding the correlation between PtCO2 and arterial pCO2 (PaCO2) measurements acquired from peripheric arterial blood gas is controversial. Objective: We aimed to determine the reliability of PtCO2 with PaCO2 based on its advantages, like non-invasiveness and continuous applicability. Methods: Thirty-five adult patients with hypercapnic respiratory failure admitted to our tertiary medical intensive care unit (ICU) were included. Then we compared PtCO2 and PaCO2 and both SpO2 measurements simultaneously. Thirty measurements from the deltoid zone and 26 measurements from the cheek zone were applied. Results: PtCO2 could not be measured from the deltoid region in 5 (14%) patients. SpO2 and pulse rate could not be detected at 8 (26.7%) of the deltoid zone measurements. Correlation coefficients between PtCO2 and PaCO2 from deltoid and the cheek region were r: 0,915 and r: 0,946 (p = 0,0001). In comparison with the Bland-Altman test, difference in deltoid measurements was -1,38 ± 1,18 mmHg (p = 0.252) and in cheek measurements it was -5,12 ± 0,92 mmHg (p = 0,0001). There was no statistically significant difference between SpO2 measurements in each region. Conclusion: Our results suggest that PtCO2 and SpO2 measurements from the deltoid region are reliable compared to the arterial blood gas analysis in hypercapnic ICU patients. More randomized controlled studies investigating the effects of different measurement areas, hemodynamic parameters, and hemoglobin levels are needed.


Author(s):  
M. Bush ◽  
J.P. Raath ◽  
D. Grobler ◽  
L. Klein

White rhinoceros anaesthetised with etorphine and azaperone combination develop adverse physiological changes including hypoxia, hypercapnia, acidosis, tachycardia and hypertension. These changes are more marked in field-anaesthetised rhinoceros. This study was designed to develop a technique to improve safety for field-anaesthetised white rhinoceros by tracheal intubation and oxygen insufflation. Twenty-five free-ranging white rhinoceros were anaesthetised with an etorphine and azaperone combination for translocation or placing microchips in their horns. Once anaesthetised the rhinoceros were monitored prior to crating for transportation or during microchip placement. Physiological measurements included heart and respiratory rate, blood pressure and arterial blood gas samples. Eighteen rhinoceros were intubated using an equine nasogastric tube passed nasally into the trachea and monitored before and after tracheal insufflation with oxygen. Seven rhinoceros were not intubated or insufflated with oxygen and served as controls. All anaesthetised rhinoceros were initially hypoxaemic (percentage arterial haemoglobin oxygen saturation (% O2Sa) = 49 % + 16 (mean + SD) and PaO2 = 4.666 + 1.200 kPa (35 + 9 mm Hg)), hypercapnic (PaCO2 = 8.265 + 1.600 kPa (62 + 12 mm Hg)) and acidaemic (pHa = 7.171 + 0.073 ). Base excess was -6.7 + 3.9 mmol/ℓ, indicating a mild to moderate metabolic acidosis. The rhinoceros were also hypertensive (systolic blood pressure = 21.861 + 5.465 kPa (164 + 41 mm Hg)) and tachycardic (HR = 107 + 31/min). Following nasal tracheal intubation and insufflation, the % O2Sa and PaO2 increased while blood pHa and PaCO2 remained unchanged.Tracheal intubation via the nose is not difficult, and when oxygen is insufflated, the PaO2 and the % O2Sa increases, markedly improving the safety of anaesthesia, but this technique does not correct the hypercapnoea or acidosis. After regaining their feet following reversal of the anaesthesia, the animals' blood gas values return towards normality.


1996 ◽  
Vol 3 (1) ◽  
pp. 47-51
Author(s):  
David J Leasa ◽  
Jacqueline M Walker

OBJECTIVE:To determine the effect on arterial blood gas (ABG) and hospital resource use by introducing a strategy of using bedside oximeters with a clinical algorithm, based on the argument that bedside pulse oximeters make economic sense in the intensive care unit (ICU) if safe patient oxygenation can be ensured at a lower cost than that of existing monitoring options.DESIGN:A before and after design was used to examine the consequences of a pulse oximeter at each bedside in the ICU along with a pulse oximeter clinical algorithm (POCA) describing use for titrating oxygen therapy and for performing ABG analysis.SETTING:A 19-bed multidisciplinary ICU with a six-bed extended ICU (EICU) available to function as a 'step-down' facility.PATIENTS:All patients admitted to the ICU/EICU over two 12-month periods were included.RESULTS:The strategy yielded a 31% reduction in the mean number of ABGs per patient after POCA (20.0±26.1 versus 13.8±16.7, mean ± SD; P<0.001) as well as a potential annual cost savings of $32,831.CONCLUSIONS:Bedside oximeters within the ICU, when used with explicit guidelines, reduce ABG use and result in hospital cost savings.


Author(s):  
Jyot Amrita

Summary   Background: COVID-19 is caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus2 (SARS-CoV-2). The foremost predominant complication of SARS-CoV-2 is arterial hypoxemia thereby disturbing lung compliance, requiring mechanical ventilation. The aim of the current research study is to analyze role of ABG as a valuable assessment tool of disease severity in SARS-CoV-2 patients. Methods: 170 arterial blood samples were collected from patients admitted in Intensive Care Unit (ICU) of Sri Guru Ram Das Charitable Hospital, Amritsar. They were analyzed for arterial blood gas using ABG analyzer. Parameters of ABG such as pH, pCo2, HCO3, O2 saturation, ionized calcium (iCa) and calculated ionized calcium (at pH 7.4) was calculated for all the samples. Results: Continuous variables were described as medians with interquartile ranges (IQRs) and categorical variables as percentages and frequencies. Spearman correlation test was done for calculation of correlation between pH and other ABG parameters. Analysis of arterial blood gas revealed significant negative correlation (p<0.05) between pH and pCO2 and significant positive correlation (p<0.05) between pH and HCO3 and between pH and delta ionized calcium. Low levels (98.2%) of ionized calcium were observed while monitoring the ABG findings though weak negative correlation (p<0.05) was observed between pH and iCa. Conclusion: Our study suggests that ABG analysis acts as a momentous indicator for critically ill patients admitted in Intensive Care Unit (ICU). Estimation of iCa in this critical care setting acts as a distinctive biochemical feature of SARS-CoV-2 disease, as an initial assessment tool, for hypocalcemia. Keywords:  Arterial Blood Gas, SARS-CoV-2, Ionized Calcium, Hypocalcemia


1997 ◽  
Vol 25 (8) ◽  
pp. 1308-1313 ◽  
Author(s):  
Chad S. Pilon ◽  
Mary Leathley ◽  
Rennie London ◽  
Shelley McLean ◽  
P. Terry Phang ◽  
...  

1987 ◽  
Vol 252 (6) ◽  
pp. R1143-R1151
Author(s):  
H. J. Mangalam ◽  
D. R. Jones ◽  
A. M. Lacombe

The extreme elevation in plasma levels of free norepinephrine (NE) and free epinephrine (EP), which occurs during forced diving of ducks (Anas platyrhynchos), was studied before and after denervation of the adrenal glands. In intact animals both NE and EP concentration increased by up to two orders of magnitude in a 4-min dive but by a significantly lesser amount if the duck breathed O2 before the dive. Denervating the adrenal glands reduced the amounts of both catecholamines (CA) released during dives, plasma EP decreased to 10%, and NE to 50% of values obtained before denervation. Breathing O2 before a dive virtually eliminated CA release in denervates, indicating that hypoxia was the important non-neural releasing agent. Hypoxia was also the most important neural releasing agent compared with hypercapnia, acidosis, or hypoglycemia. Adrenal denervation did not cause significant changes in heart rate, blood pressure, arterial blood gas tensions, pH, or plasma glucose during dives, although denervation caused increased variation in some of these variables. In ducks CA release in dives is largely due to decreasing arterial O2 partial pressure, and full expression of the response is dependent on intact innervation of the adrenal gland.


Sign in / Sign up

Export Citation Format

Share Document