scholarly journals Severe hypoxaemia in field-anaesthetised white rhinoceros (Ceratotherium simum) and effects of using tracheal insufflation of oxygen

Author(s):  
M. Bush ◽  
J.P. Raath ◽  
D. Grobler ◽  
L. Klein

White rhinoceros anaesthetised with etorphine and azaperone combination develop adverse physiological changes including hypoxia, hypercapnia, acidosis, tachycardia and hypertension. These changes are more marked in field-anaesthetised rhinoceros. This study was designed to develop a technique to improve safety for field-anaesthetised white rhinoceros by tracheal intubation and oxygen insufflation. Twenty-five free-ranging white rhinoceros were anaesthetised with an etorphine and azaperone combination for translocation or placing microchips in their horns. Once anaesthetised the rhinoceros were monitored prior to crating for transportation or during microchip placement. Physiological measurements included heart and respiratory rate, blood pressure and arterial blood gas samples. Eighteen rhinoceros were intubated using an equine nasogastric tube passed nasally into the trachea and monitored before and after tracheal insufflation with oxygen. Seven rhinoceros were not intubated or insufflated with oxygen and served as controls. All anaesthetised rhinoceros were initially hypoxaemic (percentage arterial haemoglobin oxygen saturation (% O2Sa) = 49 % + 16 (mean + SD) and PaO2 = 4.666 + 1.200 kPa (35 + 9 mm Hg)), hypercapnic (PaCO2 = 8.265 + 1.600 kPa (62 + 12 mm Hg)) and acidaemic (pHa = 7.171 + 0.073 ). Base excess was -6.7 + 3.9 mmol/ℓ, indicating a mild to moderate metabolic acidosis. The rhinoceros were also hypertensive (systolic blood pressure = 21.861 + 5.465 kPa (164 + 41 mm Hg)) and tachycardic (HR = 107 + 31/min). Following nasal tracheal intubation and insufflation, the % O2Sa and PaO2 increased while blood pHa and PaCO2 remained unchanged.Tracheal intubation via the nose is not difficult, and when oxygen is insufflated, the PaO2 and the % O2Sa increases, markedly improving the safety of anaesthesia, but this technique does not correct the hypercapnoea or acidosis. After regaining their feet following reversal of the anaesthesia, the animals' blood gas values return towards normality.

1987 ◽  
Vol 252 (6) ◽  
pp. R1143-R1151
Author(s):  
H. J. Mangalam ◽  
D. R. Jones ◽  
A. M. Lacombe

The extreme elevation in plasma levels of free norepinephrine (NE) and free epinephrine (EP), which occurs during forced diving of ducks (Anas platyrhynchos), was studied before and after denervation of the adrenal glands. In intact animals both NE and EP concentration increased by up to two orders of magnitude in a 4-min dive but by a significantly lesser amount if the duck breathed O2 before the dive. Denervating the adrenal glands reduced the amounts of both catecholamines (CA) released during dives, plasma EP decreased to 10%, and NE to 50% of values obtained before denervation. Breathing O2 before a dive virtually eliminated CA release in denervates, indicating that hypoxia was the important non-neural releasing agent. Hypoxia was also the most important neural releasing agent compared with hypercapnia, acidosis, or hypoglycemia. Adrenal denervation did not cause significant changes in heart rate, blood pressure, arterial blood gas tensions, pH, or plasma glucose during dives, although denervation caused increased variation in some of these variables. In ducks CA release in dives is largely due to decreasing arterial O2 partial pressure, and full expression of the response is dependent on intact innervation of the adrenal gland.


2020 ◽  
Vol 22 (4) ◽  
pp. 370-377
Author(s):  
Oliver M Walsh ◽  
◽  
Katelyn Davis ◽  
Jonathan Gatward ◽  
◽  
...  

Background: Arterial blood gas (ABG) analysis is the most frequently performed test in intensive care units (ICUs), often without a specific clinical indication. This is costly and contributes to iatrogenic anaemia. Objectives: To reduce the number of ABG tests performed and the proportion that are inappropriate. Design, setting and participants: The indications for ABG analysis were surveyed at a 58-bed level III ICU during fortnightly periods before and after a multifaceted educational intervention which included the introduction of a clinical guideline. The number of ABG tests performed during the period July–December 2017 was compared with that for the period July–December 2018. Tests were predefined as inappropriate if performed at regular time intervals, at change of shift, concurrently with other blood tests or after a treatment was ceased on a stable patient or after ventilatory support or oxygen delivery was decreased in an otherwise stable patient. The study was enrolled on the Quality Improvement Projects Register and ethics approval was waived by the local ethics committee. Results: There was a 31.3% bed-day adjusted decrease in number of ABG tests performed (33 005 v 22 408; P < 0.001), representing an annual saving of A$770 000 and 100 litres of blood. The proportion of inappropriate ABG tests decreased by 47.3% (54.2% v 28.6%; P < 0.001) and the number of inappropriate ABG tests per bed-day decreased by 71% (2.8 v 0.8; P < 0.001). Patient outcomes before and after the intervention did not differ (standardised mortality ratio, 0.65 v 0.63; P = 0.22). Conclusion: Staff education and implementation of a clinical guideline resulted in substantial decreases in the number of ABG tests performed and the proportion of inappropriate ABG tests.


1976 ◽  
Vol 51 (5) ◽  
pp. 503-509 ◽  
Author(s):  
D. Y. C. Yu ◽  
S. P. Lee

1. Needle acupuncture was performed at three sites in twenty patients in a clinical attack of bronchial asthma. 2. In all patients the symptoms of bronchoconstriction improved during the attacks when the correct site was stimulated, and in five patients wheezing was abolished. 3. Stimulation at the correct site produced a significant increase in the mean FEV1·0 (58%) and FVC (29%) but not in maximal mid-expiratory flow rate (MMFR; 76%), when compared with the findings before acupuncture, along with a significant fall in the Pa,co2 and an insignificant fall in Pa,o2. A mild tachycardia was also observed. 4. After acupuncture a greater improvement in FEV1·0, FVC and MMFR was produced by inhalation of isoprenaline. 5. No significant changes in FEV1·0, FVC, MMFR, pulse rate or arterial blood gas tensions occurred after acupuncture at control sites. 6. In four of the patients during clinical remission acupuncture was performed before and after histamine aerosol challenge, but there was no effect on either the severity or the duration of the histamine-induced bronchoconstriction. 7. It is concluded that acupuncture probably reduced the reflex component of the bronchoconstriction, but failed to influence direct smooth muscle constriction caused by histamine.


Author(s):  
Milad Shayan ◽  
Mohammad Sabouri ◽  
Leila Shayan ◽  
Shahram Paydar

ABSTRACTBackgroundTrauma is the third leading cause of death in the world and the first cause of death among people younger than 44 years. In traumatic patients, especially those who are injured early in the day, arterial blood gas (ABG) is considered a golden standard because it can provide physicians with important information such as detecting the extent of internal injury, especially in the lung. However, measuring these gases by laboratory methods is a time-consuming task in addition to the difficulty of sampling the patient. The equipment needed to measure these gases is also expensive, which is why most hospitals do not have this equipment. Therefore, estimating these gases without clinical trials can save the lives of traumatic patients and accelerate their recovery.MethodsIn this study, a method based on artificial neural networks for the aim of estimation and prediction of arterial blood gas is presented by collecting information about 2280 traumatic patients. In the proposed method, by training a feed-forward backpropagation neural network (FBPNN), the neural network can only predict the amount of these gases from the patient’s initial information. The proposed method has been implemented in MATLAB software, and the collected data have tested its accuracy, and its results are presented.ResultsThe results show 87.92% accuracy in predicting arterial blood gas. The predicted arterial blood gases included PH, PCO2, and HCO3, which reported accuracy of 99.06%, 80.27%, and 84.43%, respectively. Therefore, the proposed method has relatively good accuracy in predicting arterial blood gas.ConclusionsGiven that this is the first study to predict arterial blood gas using initial patient information(systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse rate (PR), respiratory rate (RR), and age), and based on the results, the proposed method could be a useful tool in assisting hospital and laboratory specialists, to be used.


2020 ◽  
Vol 47 (6) ◽  
pp. 849-851
Author(s):  
Tom Bleeser ◽  
Lennart Van Der Veeken ◽  
Sarah Devroe ◽  
Jan Deprest ◽  
Steffen Rex

Author(s):  
Morne C Bezuidenhout ◽  
Owen J Wiese ◽  
Desiree Moodley ◽  
Elizna Maasdorp ◽  
Mogamat R Davids ◽  
...  

Background During the outbreak of coronavirus disease 2019 (COVID-19), many studies have investigated laboratory biomarkers in management and prognostication of COVID-19 patients, however to date, few have investigated arterial blood gas, acid–base and blood pressure patterns. The aim of the study is to assess the arterial blood gas and acid–base patterns, blood pressure findings and their association with the outcomes of COVID-19 patients admitted to an intensive care unit. Methods A single-centre retrospective, observational study in a dedicated COVID-19 intensive care unit in Cape Town, South Africa. Admission arterial blood gas, serum electrolytes, renal function and blood pressure readings performed on COVID-19 patients admitted between 26 March and 2 June 2020 were analysed and compared between survivors and non-survivors. Results A total of 56 intensive care unit patients had admission arterial blood gas performed at the time of intensive care unit admission. An alkalaemia (pH > 7.45) was observed in 36 (64.3%) patients. A higher arterial pH (median 7.48 [interquartile range: 7.45–7.51] versus 7.46 [interquartile range: 7.40–7.48], P = 0.049) and partial pressure of oxygen in arterial blood (median 7.9 kPa [interquartile range: 7.3–9.6] versus 6.5 kPa [interquartile range: 5.2–7.3], P = <0.001) were significantly associated with survival. Survivors also tended to have a higher systolic blood pressure (median: 144 mmHg [interquartile range: 134–152] versus 139 mmHg [interquartile range: 125–142], P = 0.078) and higher arterial HCO3 (median: 28.0 mmol/L [interquartile range: 25.7–28.8] versus 26.3 mmol/L [interquartile range: 24.3–27.9], P = 0.059). Conclusions The majority of the study population admitted to intensive care unit had an alkalaemia on arterial blood gas. A higher pH and lower partial pressure of oxygen in arterial blood on arterial blood gas analysis were significantly associated with survival.


Sign in / Sign up

Export Citation Format

Share Document