scholarly journals Effect of biotherapic of Alternaria solani on the early blight of tomato-plant and the in vitro development of the fungus

2021 ◽  
Vol 9 (33) ◽  
pp. 147-155
Author(s):  
Solange Monteiro de Toledo Piza Gomes Carneiro ◽  
Euclides Davidson Bueno Romano ◽  
Erika Pignoni ◽  
Marcus Zulian Teixeira ◽  
Maria Elizabeth da Costa Vasconcelos ◽  
...  

Background: homeopathy is a means permitted in organic agriculture to control disease and plagues; biotherapics are a practical means for farmers to intervene on the health of plants in agro-ecological systems of production. Tomato-plants can be affected by several diseases, one of the most significant ones in Brazil is early blight, caused by fungus Alternaria solani, due to the damage it causes and its wide distribution in the country. Aims: to establish whether a biotherapic of A. solani may interfere on the in vitro development of the fungus and whether it affects the severity of early blight on tomato-plants in greenhouse. Methods: the effect of the biotherapic on the fungus was evaluated through the percentage of germinated spores under microscope and the growth of colonies in a culture medium. Treatments used were: biotherapic 26cH, 27cH, 28cH, 29cH and 30cH; sterilized distilled water; and diluted and agitated hydroalcoholic solution. The effect of the biotherapic on the development of disease was evaluated in 4 experiments in greenhouse. Plants were kept in vases and subjected to artificial inoculation of the fungus after the application of treatments. Evaluation of disease was carried out through diagrammatic scale. Results: no treatment affected the germination of spores or the development of fungus colonies in the culture medium. In the first test, treatment 26cH differed from water in Tukey’s test at 5% but did not differed from diluted and agitated hydroalcoholic solution. In the second test, treatments 27cH and 28cH showed significant difference from both water and hydroalcoholic solution with an average control of disease of 57% and 62% respectively. The other 2 tests did nor exhibit any significant effect. Conclusions: there was no direct effect of the biotherapic on the fungus, but there was an effect on the severity of the disease. Factors affecting the efficiency of the biotherapic must be better understood before it can be recommended to farmers for the management of early blight in tomato-plants.

2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P<0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P<0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P<0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


1999 ◽  
Vol 82 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
Sudripta Das ◽  
Timir B Jha ◽  
Sumita Jha

2016 ◽  
Vol 28 (2) ◽  
pp. 171
Author(s):  
J. A. Benne ◽  
L. D. Spate ◽  
B. M. Elliott ◽  
R. S. Prather

For decades it has been known that reactive oxidative species (ROS) form during in vitro embryo culture. A buildup of ROS can be detrimental to individual cells in the embryo and lead to a decrease in development and quality. To overcome oxidative stress in culture systems, additives, such as taurine and/or hypotaurine, have been used. In the pig, taurine or hypotaurine addition is deemed necessary for normal in vitro development. Another commonly used technique to reduce ROS is to culture embryos in a lowered oxygen environment (e.g. 5%). Porcine zygote medium 3 (PZM3) base culture medium is used in the following experiments and contains 5 mM hypotaurine, which is one of the most costly additives in the medium. The objective of this experiment was to determine if hypotaurine is still necessary if the embryos were cultured in 5% O2 from the zygote to the Day 6 blastocyst stage. In Experiment 1, oocytes were matured for 44 h and fertilized in vitro. After fertilization, presumptive zygotes were then transferred to 500 µL of MU-1 medium (PZM3 with 1.69 mM arginine) that either contained or did not contain hypotaurine for overnight culture at 20% O2. On Day 1, the same embryo culture plates were moved to 5% O2, 5% CO2, and 90% N2 and cultured to Day 6. The percent blastocyst stage was determined, and total cell number was counted in 3 of the 5 replicates in order to give us an indication of the embryo quality. The percent blastocyst in the controls (+hypotaurine) was 34.4% ± 2.8 and not different from the no hypotaurine (32.9% ± 2.2; N = 830; 5 replications; P > 0.10). Furthermore, total cell number was not different between the two groups (30.8 ± 1.5 v. 33.6 ± 1.8, respectively, N = 146; 3 replications; P > 0.10). In Experiment 2, the same experiment was repeated in somatic cell nuclear transfer derived embryos, which may be more sensitive to ROS due to the micromanipulation procedure. Wild type fetal fibroblast cells were used as donor cells. There was no significant difference in development to the blastocyst stage due to the presence or absence of hypotaurine (17.7% ± 2.5 v. 11.8% ± 2.3, respectively; N = 454; 4 replications; P = 0.07). All blastocyst data were analysed using the GENMOD procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and cell number data were analysed using the PROC GLM also with SAS 9.4. These data show that porcine embryos can be efficiently cultured to the blastocyst stage without adding any oxygen free radical scavengers to the media when culturing in reduced oxygen atmosphere. Further studies include evaluating term development via embryo transfers and measuring ROS production of these embryos. Funding was provided by Food for the 21st Century and the National Institutes of Health (U42 OD011140).


Author(s):  
L.S.S. Varaprasad Reddy ◽  
B.R. Naik ◽  
A.V.N. Sivakumar ◽  
B. Punyakumari ◽  
J. Suresh

Background: Ovarian follicular development and growth are controlled by many hormones and growth factors. Despite the fact that LH and estradiol-17β have been utilized for the in vitro culture of preantral follicles yet, the suitable time points of supplementation of LH and estradiol-17β is not known. Therefore this study aimed to investigate the influence of addition of LH and estradiol-17β at different time points on in vitro development of preantral follicles (PFs’) in sheep. Method: Preantral follicles isolated from the ovarian cortical slices using micro dissection method were cultured for six days in Bicarbonate buffered Tissue culture medium 199B (TCM 199B) or in a standard culture medium supplemented with LH (2 μg/ml) and estradiol-17β (5 ng/ml) at different points during the culture period. COCs isolated from the follicles at the end of six day culture in different treatments were subjected to in vitro maturation for additional 24h. Result: Supplementation of LH and estradiol-17β during last two days of the culture supported better proportion of PFs’ exhibiting growth whereas supplementation of LH and estradiol-17β during first two days of the culture supported better average increase in diameter and proportion of PFs’ exhibiting antrum formation at the end of six day culture. Further the oocytes in COCs isolated at the end of culture in these treatments and subsequently subjected to in vitro maturation (IVM) for 24hr developed at a higher frequency to MII (metaphase II) stage. Supplementation of LH and estradiol-17β to TCM 199B culture medium in early stages followed by standard medium alone in later stages supports better development of PFs’ in vitro. Following supplementation with LH and estradiol-17β for the first two days culture of PFs’ in standard medium appears to be advantageous for the development of preantral follicles in vitro.


2012 ◽  
Vol 24 (3) ◽  
pp. 490 ◽  
Author(s):  
A. B. G. Duarte ◽  
V. R. Araújo ◽  
R. N. Chaves ◽  
G. M. Silva ◽  
D. M. Magalhães-Padilha ◽  
...  

The aim of this study was to evaluate the effect of follicular fluid collected from bovine dominant follicles (bFF) on the in vitro development of goat preantral follicles and determine the best time to add this supplement to the culture medium. The preantral follicles were isolated and randomly distributed into four treatments in absence (control) or presence of 10% of bFF added on Days 0 (FF0–18), 6 (FF6–18) or 12 (FF12–18) of culture onwards. After 18 days, follicular development was assessed based on follicular survival, antral cavity formation, increased follicular diameter as well as fully grown oocyte (>110 μm) viability and meiosis resumption. The oocytes from the cultured follicles were in vitro-matured and processed for fluorescence or ultrastructural analysis. The results showed that on Day 18 the treatment FF0–18 had a significantly higher (P < 0.05) survival than control and FF12–18, but not FF6–18. The addition of bFF at the beginning of culture (FF0–18 and FF6–18) promoted a high percentage of follicular growth, meiosis resumption and early antrum formation. Moreover, this study described for the first time the ultrastructural analysis of caprine oocytes grown in vitro. This evaluation revealed that in the presence of bFF on (FF0–18) the in vitro-grown oocytes presented normal organelle distribution and well-defined, intact plasma and nuclear membranes. In conclusion, bFF originating from dominant follicles maintain the survival and promote the in vitro growth of goat preantral follicles when added at the beginning of culture.


Sign in / Sign up

Export Citation Format

Share Document