scholarly journals EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events

2010 ◽  
Vol 10 (16) ◽  
pp. 7907-7927 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
E. Asmi ◽  
S. Gagné ◽  
S. Häkkinen ◽  
...  

Abstract. We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.

2010 ◽  
Vol 10 (4) ◽  
pp. 11251-11313 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
E. Asmi ◽  
S. Gagné ◽  
S. Häkkinen ◽  
...  

Abstract. We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new-particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New-particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly-formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the respective total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.


2008 ◽  
Vol 8 (2) ◽  
pp. 6313-6353 ◽  
Author(s):  
L. Laakso ◽  
H. Laakso ◽  
P. P. Aalto ◽  
P. Keronen ◽  
T. Petäjä ◽  
...  

Abstract. We have analyzed one year (July 2006–July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. Gases and particles had a clear seasonal and diurnal variation, which was associated with field fires and biological activity together with local meteorology. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1) and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.


2013 ◽  
Vol 13 (1) ◽  
pp. 1455-1488 ◽  
Author(s):  
E. Herrmann ◽  
A. J. Ding ◽  
T. Petäjä ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
...  

Abstract. Aerosols and new particle formation were studied in the western part of the Yangtze River Delta (YRD), at the SORPES station of Nanjing University. Air ions between 0.8 and 42 nm were measured using an air ion spectrometer; a DMPS provided particle size distributions between 6 and 800 nm. Additionally, meteorological data, trace gas concentrations, and PM2.5 values were recorded. During the measurement period from 18 November 2011 to 31 March 2012, the mean total particle concentration was found to be 23 000 cm−3. The mean PM2.5 value was 90 μ g m−3, well above national limits. During the observations, 26 new particle formation events occurred, typically producing 6 nm particles at a rate of 1 cm−3 s−1, resulting in over 4000 cm−3 new CCN per event. Typical growth rates were between 6 and 7 nm h−1. Ion measurements showed the typical cluster band below 2 nm, with total ion concentrations roughly between 600 and 1000 cm−3. A peculiar feature of the ion measurements were the heightened ion cluster concentrations during the nights before event days. The highly polluted air of the YRD provides both the potential source (SO2) and the sink (particulate matter) for sulfuric acid, leaving radiation as the determining force behind new particle formation. Accordingly, a good correlation was found between new particle formation rate and radiation values.


2006 ◽  
Vol 6 (12) ◽  
pp. 5631-5648 ◽  
Author(s):  
D. V. Spracklen ◽  
K. S. Carslaw ◽  
M. Kulmala ◽  
V.-M. Kerminen ◽  
G. W. Mann ◽  
...  

Abstract. The contribution of boundary layer (BL) nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the BL at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm−3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental regions are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of BL particle formation over tropical regions and the Amazon is negligible. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget.


2009 ◽  
Vol 9 (12) ◽  
pp. 4077-4089 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
I. Riipinen ◽  
T. Yli-Juuti ◽  
S. Gagné ◽  
...  

Abstract. Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and activation occurs. The relative contribution of neutral and charged particles to the new particle formation rate is also studied. The data include particle and ion number size distributions and total particle concentration measurements at a boreal forest site in Hyytiälä, Finland, during the spring 2007 EUCAARI field campaign. The total and charged particle formation rates differed from each other by approximately an order of magnitude. The median formation rates of 2 nm total and charged particles were 0.65 cm−3 s−1 and 0.03 cm−3 s−1, respectively. The median growth rates of particles in size classes 1.3–3, 3–7 and 7–20 nm were 1.9, 3.6 and 4.2 nm h−1, respectively. The calculated ion-ion recombination rates were about the same order of magnitude as the ion-induced formation rates. The results indicate that the ion-induced nucleation involving the ion-ion recombination products, i.e. ion mediated nucleation, contributes approximately 10% to the boreal forest new particle formation events.


2013 ◽  
Vol 13 (15) ◽  
pp. 7473-7487 ◽  
Author(s):  
E. Järvinen ◽  
A. Virkkula ◽  
T. Nieminen ◽  
P. P. Aalto ◽  
E. Asmi ◽  
...  

Abstract. We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E). Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.


2016 ◽  
Author(s):  
Ganglin Lv ◽  
Xiao Sui ◽  
Jianmin Chen ◽  
Rohan Jayaratne ◽  
Abdelwahid Mellouki

Abstract. To date very few field observations of new particle formation (NPF) have been carried out at the high-elevation mountain sites in China. Simultaneously measurements of particle size distributions, gas species, meteorological conditions and PM2.5 were performed at the summit of Mt. Tai (1530 m ASL) from 25 July to 24 October 2014 (І), 21 September to 9 December 2014 (И) and 16 June to 7 August 2015 (Ш). The results showed that: (i) 66 NPF events were observed during 164 days, corresponding to an occurrence frequency of 40 %. Formation rates, growth rates and condensation sinks were in the range of 1.10–57.43 cm−3 s−1, 0.58–7.76 nm h−1 and 0.40 × 10−2–6.32 × 10−2 s−1, respectively, and Mt. Tai appeared to show the larger formation rate and smaller growth rate relative to other locations in China. The mean value of sulfur dioxide on NPF days was 46 % higher than that on non-NPF days, and a higher sulfur dioxide concentration could improve the possibility of rich precursors for NPF. (ii) Sulfuric acid condensation contributed to 16.20 % of growth rate, and sulfuric acid proxy showed an obvious correlation with total particle concentration of 3–6 nm (N3–6 nm). (iii) Low PM2.5 was favourable for nucleation, and NPF days with limited higher PM2.5 seemed to have larger growth rates which might be related to particles recombination in close sizes. Four NPF events were observed on haze episodes, which could be promoted by potential specific mechanisms or pollutants. (iv) Particles formed via NPF on both clean and polluted days mainly contributed to Aiken mode eventually, and PM2.5 variation was always in accordance with particle total volume concentration.


2010 ◽  
Vol 10 (22) ◽  
pp. 11223-11242 ◽  
Author(s):  
P. Paasonen ◽  
T. Nieminen ◽  
E. Asmi ◽  
H. E. Manninen ◽  
T. Petäjä ◽  
...  

Abstract. Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites – Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4]2, but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=KSA1[H2SO4]2+KSA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3[org]2, equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.


2006 ◽  
Vol 6 (4) ◽  
pp. 7323-7368 ◽  
Author(s):  
D. V. Spracklen ◽  
K. S. Carslaw ◽  
M. Kulmala ◽  
V.-M. Kerminen ◽  
G. W. Mann ◽  
...  

Abstract. The contribution of boundary layer nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the boundary layer at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm−3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of boundary layer particle formation over tropical regions and the Amazon is negligible. Particle concentrations are enhanced by a factor 3–10 over the remote Southern Ocean (30–70° S), resulting in total concentrations of ~250–1000 cm−3, in good agreement with observations. Particle formation tends to peak towards the top of the marine boundary layer and there is a lack of obvious burst-like behaviour at the sea surface. This result suggests that new particle formation in the marine boundary layer could be confused with entrainment from the free troposphere. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget.


2008 ◽  
Vol 8 (16) ◽  
pp. 4823-4839 ◽  
Author(s):  
L. Laakso ◽  
H. Laakso ◽  
P. P. Aalto ◽  
P. Keronen ◽  
T. Petäjä ◽  
...  

Abstract. We have analyzed one year (July 2006–July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1) and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.


Sign in / Sign up

Export Citation Format

Share Document