total particle number
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 21 (24) ◽  
pp. 18707-18726
Author(s):  
Agnes Straaten ◽  
Stephan Weber

Abstract. Size-resolved particle number fluxes in the size range of 10 nm < particle diameter (Dp) < 200 nm were measured over a 3-year period (April 2017–March 2020) using the eddy-covariance technique at an urban site in Berlin, Germany. The observations indicated the site as a net source of particles with a median total particle number flux of FTNC=0.86 × 108 m−2 s−1. The turbulent surface–atmosphere exchange of particles was clearly dominated by ultrafine particles (Dp < 100 nm) with a share of 96 % of total particle number flux (FUFP=0.83 × 108 m−2 s−1). Annual estimates of median FTNC and FUFP slightly decreased by −9.6 % (−8.9 % for FUFP) from the first to the second observation year and a further −5.9 % (−6.1 % for FUFP) from the second to the third year. The annual variation might be due to different reasons such as the variation of flux footprints in the individual years, a slight reduction of traffic intensity in the third year, or a progressive transition of the vehicle fleet towards a higher share of low-emission standards or electric drive. Size-resolved measurements illustrated events of bidirectional fluxes, i.e. simultaneous emission and deposition fluxes within the size spectrum, which occurred more often in spring, late summer, and autumn than in winter. Multi-year observations of size-resolved particle fluxes proved to be important for a deeper understanding of particle exchange processes with the urban surface and the pronounced influence of traffic at this urban site.


2021 ◽  
Author(s):  
Agnes Straaten ◽  
Stephan Weber

Abstract. Size-resolved particle number fluxes in the size range 10 nm <  particle diameter (Dp) < 200 nm were measured over a 3-year period (April 2017–March 2020) using the eddy covariance technique at an urban site in Berlin, Germany. The observations indicated the site as a net source of particles with a median total particle number flux of FTNC = 0.86 × 108 m−2 s−1. The turbulent surface-atmosphere exchange of particles was clearly dominated by ultrafine particles (Dp < 100 nm) with a share of 96 % of total particle number flux (FUFP = 0.83 × 108 m−2 s−1). Annual estimates of median FTNC and FUFP slightly decreased by −9.6 % (−8.9 % for FUFP) from the first to the second observation year and a further −5.9 % (−6.1 % for FUFP) from the second to the third year. The annual variation might be due to different reasons such as variation of flux footprints in the individual years, a slight reduction of traffic intensity in the third year or a progressive transition of the vehicle fleet towards a higher share of low-emission standards or electric drive. Size-resolved measurements illustrated events of bidirectional fluxes, i.e. simultaneous emission and deposition fluxes within the size spectrum, which occurred more often in spring, late summer and autumn than in winter. Multi-year observations of size-resolved particle fluxes proved to be important for deeper understanding of particle exchange processes with the urban surface and the pronounced influence of traffic at this urban site.


2021 ◽  
Author(s):  
Miska Olin ◽  
David Patoulias ◽  
Heino Kuuluvainen ◽  
Jarkko V. Niemi ◽  
Topi Rönkkö ◽  
...  

Abstract. Sub-50 nm particles originating from traffic emissions pose risks to human health due to their high lung deposition efficiency and potentially harmful chemical composition. We present a modelling study using an updated EUCAARI number emission inventory, incorporating a more realistic, empirically justified particle size distribution (PSD) for sub-50 nm particles from road traffic. We present experimental PSDs and CO2 concentrations, measured in a highly trafficked street canyon in Helsinki, Finland, as an emission factor particle size distribution (EFPSD), which was then used in updating the EUCAARI inventory. We applied the updated inventory in a simulation using the regional chemical transport model PMCAMx-UF over Europe for May 2008 to test the effect of updated emissions in regional and local scales and in contrast to atmospheric new particle formation (NPF). Updating the inventory increased simulated average total particle number concentrations by only 1 %, although the total particle number emissions were increased to a 3-fold level. The concentrations increased up to 11 % when only 1.3–3 nm-sized particles (nanocluster aerosol, NCA) were considered. These values indicate that the effect of updating overall is insignificant in a regional scale during this photochemically active period, during which the fraction of the total particle number originating through atmospheric NPF processes was 91 %. These simulations give a lower limit for the contribution of traffic to the aerosol levels. Nevertheless, the situation is different when examining the effect of the update spatially or temporally, or when focusing to the chemical composition or the origin of the particles. For example, daily average NCA concentrations increased by a factor of several hundreds or thousands in some locations on certain days. Overall, the most significant effects–reaching several orders of magnitude–from updating the inventory are observed when examining specific particle sizes (especially 7–20 nm), particle components, and specific urban areas. While the model still has a tendency to predict more sub-50 nm particles compared to the observations, the most notable underestimations in the concentrations of sub-10 nm particles are, after updating, overcome and the simulated distributions now agree better with the data observed at locations having high traffic densities. The findings of this study highlight the need to consider emissions, PSDs, and composition of sub-50 nm particles from road traffic in studies focusing on urban air quality. Updating this emission source brings the simulated aerosol levels particularly in urban locations closer to observations, which highlights its importance for calculations of human exposure to nanoparticles.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 352
Author(s):  
Adelaide Dinoi ◽  
Daniel Gulli ◽  
Ivano Ammoscato ◽  
Claudia R. Calidonna ◽  
Daniele Contini

During the new coronavirus infection outbreak, the application of strict containment measures entailed a decrease in most human activities, with the consequent reduction of anthropogenic emissions into the atmosphere. In this study, the impact of lockdown on atmospheric particle number concentrations and size distributions is investigated in two different sites of Southern Italy: Lecce and Lamezia Terme, regional stations of the GAW/ACTRIS networks. The effects of restrictions are quantified by comparing submicron particle concentrations, in the size range from 10 nm to 800 nm, measured during the lockdown period and in the same period of previous years, from 2015 to 2019, considering three time intervals: prelockdown, lockdown and postlockdown. Different percentage reductions in total particle number concentrations are observed, −19% and −23% in Lecce and −7% and −4% in Lamezia Terme during lockdown and postlockdown, respectively, with several variations in each subclass of particles. From the comparison, no significant variations of meteorological factors are observed except a reduction of rainfall in 2020, which might explain the higher levels of particle concentrations measured during prelockdown at both stations. In general, the results demonstrate an improvement of air quality, more conspicuous in Lecce than in Lamezia Terme, during the lockdown, with a differed reduction in the concentration of submicronic particles that depends on the different types of sources, their distance from observational sites and local meteorology.


2020 ◽  
Author(s):  
Imre Salma ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi ◽  
Wanda Thén ◽  
Tamás Weidinger

Abstract. Motor vehicle road traffic in central Budapest was reduced by approximately 50 % of its ordinary level for several weeks as a consequence of various limitation measures introduced to mitigate the first outbreak of COVID-19 pandemic in 2020. The situation was utilised to assess the real potentials of urban traffic on air quality. Concentrations of NO, NO2, CO, O3, SO2 and particulate matter (PM) mass, which are ordinarily monitored in cities for air quality considerations, aerosol particle number size distributions, which are not rarely measured on-line continuously on longer run for research purposes and basic meteorological properties usually available were jointly evaluated. The largest changes occurred in the time interval of the severest limitations (partial lock-down in the Restriction phase from 28 March to 17 May 2020). Concentrations of NO, NO2, CO, total particle number (N6–1000) and particles with a diameter


2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Maximilian Kiefer-Emmanouilidis ◽  
Razmik Unanyan ◽  
Jesko Sirker ◽  
Michael Fleischhauer

Entanglement in a pure state of a many-body system can be characterized by the Rényi entropies S^{(\alpha)}=\ln\textrm{tr}(\rho^\alpha)/(1-\alpha)S(α)=lntr(ρα)/(1−α) of the reduced density matrix \rhoρ of a subsystem. These entropies are, however, difficult to access experimentally and can typically be determined for small systems only. Here we show that for free fermionic systems in a Gaussian state and with particle number conservation, S^{(2)}S(2) can be tightly bound—from above and below—by the much easier accessible Rényi number entropy S^{(2)}_N=-\ln \sum_n p^2(n)SN(2)=−ln∑np2(n) which is a function of the probability distribution p(n)p(n) of the total particle number in the considered subsystem only. A dynamical growth in entanglement, in particular, is therefore always accompanied by a growth—albeit logarithmically slower—of the number entropy. We illustrate this relation by presenting numerical results for quenches in non-interacting one-dimensional lattice models including disorder-free, Anderson-localized, and critical systems with off-diagonal (bond) disorder.


2020 ◽  
Author(s):  
Nobuyuki Takegawa ◽  
Yoshiko Murashima ◽  
Akihiro Fushimi ◽  
Kentaro Misawa ◽  
Yuji Fujitani ◽  
...  

Abstract. Civil aviation is undergoing rapid growth as a result of global economic development. Characterizing ultrafine particle emissions from jet aircraft equipped with turbofan engines, which are commonly used in civil aviation, is an important issue for the assessment of the impacts of aviation on climate and on human health. Previous studies have reported that particle number emissions from jet aircraft are dominated by volatile particles (mainly sulphate and organics) with mode diameters of 10–20 nm and that non-volatile particles (mainly soot) exhibit mode diameters of ~20–60 nm, depending on the engine types and thrust conditions. However, there are significant uncertainties in measuring particles with diameters smaller than ~10 nm, especially when fresh aircraft exhaust plumes are measured near the emission sources. We conducted field observations of aerosols and carbon dioxide (CO2) near a runway of Narita International Airport, Japan, in February 2018, with specific focuses on the contributions of sub-10 nm size ranges to total and non-volatile particles. Spiked increases in particle number concentrations and CO2 were observed to be associated with wind directions from the runway, which can be attributed to diluted aircraft exhaust plumes. We estimated the particle number emission indices (EIs) for discrete take-off plumes. The median total particle number EI with diameters larger than 2.5 nm was ~60 times greater than the median non-volatile particle number EI with diameters larger than 10 nm for take-off plumes. This value can be interpreted as the difference between total particle number emissions under real-world conditions and non-volatile particle number emissions regulated by standard engine tests. More than half of particle numbers in the plumes were found in the size range smaller than ~10 nm on average for both total and non-volatile particles. The mode diameters of the size distributions of particle number EIs were found to be smaller than ~10 nm in most cases, and the peak EI values were larger than those previously reported under real-world operating conditions. This study provides new insights into the significance of sub-10 nm particles in aircraft exhaust plumes under real-world conditions, which is important in understanding aviation impacts on human health and also in developing aviation emission inventories for regional and global models.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 334 ◽  
Author(s):  
Adelaide Dinoi ◽  
Marianna Conte ◽  
Fabio M. Grasso ◽  
Daniele Contini

Continuous measurements of particle number size distributions in the size range from 10 nm to 800 nm were performed from 2015 to 2019 at the ECO Environmental-Climate Observatory of Lecce (Global Atmosphere Watch Programme/Aerosol, Clouds and Trace Gases Research Infrastructure (GAW/ACTRIS) regional station). The main objectives of this work were to investigate the daily, weekly and seasonal trends of particle number concentrations and their dependence on meteorological parameters gathering information on potential sources. The highest total number concentrations were observed during autumn-winter with average values nearly twice as high as in summer. More than 52% of total particle number concentration consisted of Aitken mode (20 nm < particle diameter (Dp) < 100 nm) particles followed by accumulation (100 nm < Dp < 800 nm) and nucleation (10 nm < Dp < 20 nm) modes representing, respectively, 27% and 21% of particles. The total number concentration was usually significantly higher during workdays than during weekends/holidays in all years, showing a trend likely correlated with local traffic activities. The number concentration of each particle mode showed a characteristic daily variation that was different in cold and warm seasons. The highest concentrations of the Aitken and accumulation particle mode were observed in the morning and the late evening, during typical rush hour traffic times, highlighting that the two-particle size ranges are related, although there was significant variation in the number concentrations. The peak in the number concentrations of the nucleation mode observed in the midday of spring and summer can be attributed to the intensive formation of new particles from gaseous precursors. Based on Pearson coefficients between particle number concentrations and meteorological parameters, temperature, and wind speed had significant negative relationships with the Aitken and accumulation particle number concentrations, whereas relative humidity was positively correlated. No significant correlations were found for the nucleation particle number concentrations.


2020 ◽  
Author(s):  
Clémence Rose ◽  

&lt;p&gt;Due to their multiple effects on climate and human health, aerosol particles are a key component of the Earth&amp;#8217;s atmosphere. The understanding of these effects however remains incomplete, which in turn affects their quantification at the present time as well as future predictions. These limitations highlight the need for continuing the efforts to organize long term monitoring of the climate-relevant aerosol properties in as broad a network as possible.&lt;/p&gt;&lt;p&gt;The value of such measurements, which are performed in compliance with homogenous protocols and meet high quality standards, is clearly demonstrated in the present analysis. This work, which is focused on the particle number concentration and particle number size distribution (PNSD), is part of a wider project, one of the objectives of which is to document the variability of climate-relevant aerosol properties based on available in-situ near-surface measurements. To investigate the spatial variability of the abovementioned aerosol physical properties, observations collected at 57 sites connected to the Global Atmosphere Watch (GAW) network were analysed for a reference year (2017). Measurements performed with condensation particle counters (CPC, 21 sites) and mobility particle size spectrometers (MPSS, 36 sites) were both included in the analysis; in the latter case, the total particle number concentration, N&lt;sub&gt;tot&lt;/sub&gt;, was calculated over the diameter range 10 &amp;#8211; 500 nm.&lt;/p&gt;&lt;p&gt;As a result of enhanced sources, N&lt;sub&gt;tot&lt;/sub&gt; is generally higher during warmer seasons at all sites (in connection with atmospheric boundary layer dynamics for mountain sites). In addition, based on available MPSS data, the major contribution of Aitken mode particles (30-100 nm) to the total particle number concentration also appears as a common feature of all environments. In contrast, the observed levels of N&lt;sub&gt;tot&lt;/sub&gt;, between 10&lt;sup&gt;1&lt;/sup&gt; and 10&lt;sup&gt;4&lt;/sup&gt; cm&lt;sup&gt;-3&lt;/sup&gt;, and the magnitude of its seasonal cycle, exhibit, together with the variations of the PNSD, some distinctive behaviour for the different geographical categories and environmental footprint classes, with additional site-dependent characteristics. Among other factors (including the nature and proximity of the particles sources), the level of anthropogenic influence appears to strongly affect the observations.&lt;/p&gt;&lt;p&gt;This work will be completed in the near future with a trend analysis to document the temporal variability of the particle number concentration and PNSD.&lt;/p&gt;


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1788
Author(s):  
Ping Sun ◽  
Ze Liu ◽  
Wei Dong ◽  
Song Yang

Ethanol has significant potential for the reduction of fuel consumption and the emissions of engines. In this paper, a dual-fuel combined engine test rig with ethanol injected in the intake port and gasoline injected directly into the cylinder are developed and the effects of ethanol/gasoline ratio (Re) on the combustion and emission of particle numbers are investigated experimentally. The results indicate that the peak in-cylinder temperature (Tmax) decreases continuously with the increase of the ethanol/gasoline ratio (Re). For particle emissions, ethanol can significantly reduce the accumulation mode particle number (APN) at low engine speed; and the lowest number of particulates are at G25 (the gasoline ratio is 25% of the fuel) at low load. And at high engine load, the total particle number (TPN) is insensitive to speed with large ethanol fraction and TPN is relatively small. With the decrease of Re (Re < 50%), TPN rises sharply. When the direct injection timing advances, TPN reduces continuously and the effects caused by speed can be neglected. On the contrary, the speed has significant effects on particle emissions at various ignition times. At low speed, increasing ignition advance can cause the increase of the TPN; which is contrary to the effects of particle emissions at medium engine speed. And the effect of ignition timing at high speed on particle number is not obvious. The ignition timing for which the lowest TPN is reached will increase with the direct injection timing advances.


Sign in / Sign up

Export Citation Format

Share Document