scholarly journals Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

2010 ◽  
Vol 10 (17) ◽  
pp. 8353-8372 ◽  
Author(s):  
T. W. Walker ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
W. R. Leaitch ◽  
A. M. MacDonald ◽  
...  

Abstract. We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) in spring 2006 using a global chemical transport model (GEOS-Chem) to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N) tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs). A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE) and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is greatest in the eastern Pacific; commonly occurring transport patterns advect this ozone northeastward into Canada. Transport events observed by the aircraft confirm that polluted airmasses were advected in this way.

2010 ◽  
Vol 10 (4) ◽  
pp. 8717-8764
Author(s):  
T. W. Walker ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
W. R. Leaitch ◽  
A. M. MacDonald ◽  
...  

Abstract. We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) in spring 2006 using a global chemical transport model (GEOS-Chem) to evaluate sensitivities of the Pacific and North American free troposphere to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N) tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs). A sensitivity study decoupling PANs from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE) and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2%. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is greatest in the eastern Pacific; persistent winds advect this ozone northeastward into Canada. Transport events observed by the aircraft confirm that polluted airmasses were advected in this way.


2017 ◽  
Author(s):  
Peter M. Edwards ◽  
Mathew J. Evans

Abstract. Tropospheric ozone is important for the Earth’s climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.


2018 ◽  
Vol 11 (7) ◽  
pp. 2825-2840 ◽  
Author(s):  
Tim Butler ◽  
Aurelia Lupascu ◽  
Jane Coates ◽  
Shuai Zhu

Abstract. A system for source attribution of tropospheric ozone produced from both NOx and volatile organic compound (VOC) precursors is described, along with its implementation in the Community Earth System Model (CESM) version 1.2.2 using CAM4. The user can specify an arbitrary number of tag identities for each NOx or VOC species in the model, and the tagging system rewrites the model chemical mechanism and source code to incorporate tagged tracers and reactions representing these tagged species, as well as ozone produced in the stratosphere. If the user supplies emission files for the corresponding tagged tracers, the model will produce tagged ozone tracers which represent the contribution of each of the tag identities to the modelled total tropospheric ozone. Our tagged tracers preserve Ox. The size of the tagged chemical mechanism scales linearly with the number of specified tag identities. Separate simulations are required for NOx and VOC tagging, which avoids the sharing of tag identities between NOx and VOC species. Results are presented and evaluated for both NOx and VOC source attribution. We show that northern hemispheric surface ozone is dominated year-round by anthropogenic emissions of NOx, but that the mix of corresponding VOC precursors changes over the course of the year; anthropogenic VOC emissions contribute significantly to surface ozone in winter–spring, while biogenic VOCs are more important in summer. The system described here can provide important diagnostic information about modelled ozone production, and could be used to construct source–receptor relationships for tropospheric ozone.


2014 ◽  
Vol 14 (17) ◽  
pp. 24573-24621 ◽  
Author(s):  
S. R. Arnold ◽  
L. K. Emmons ◽  
S. A. Monks ◽  
K. S. Law ◽  
D. A. Ridley ◽  
...  

Abstract. We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high laititudes (> 50˚ N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, Δ O3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.44–6.28 pptv ppbv−1) than GEOS5-forced models (2.02–3.02 pptv ppbv−1), which we show is likely linked to differences efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from Asia towards the Arctic using a Lagrangian chemical transport model show that 4 day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HO2 from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high latitude tropospheric ozone during summer.


2021 ◽  
Vol 21 (24) ◽  
pp. 18227-18245
Author(s):  
Amir H. Souri ◽  
Kelly Chance ◽  
Juseon Bak ◽  
Caroline R. Nowlan ◽  
Gonzalo González Abad ◽  
...  

Abstract. Questions about how emissions are changing during the COVID-19 lockdown periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and chemical feedback. A chemical transport model simulation benefiting from a multi-species inversion framework using well-characterized observations should differentiate those influences enabling to closely examine changes in emissions. Accordingly, we jointly constrain NOx and VOC emissions using well-characterized TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 columns during the months of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NOx emissions in March 2020 (14 %–31 %) in several major cities including Paris, London, Madrid, and Milan, expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34 %–51 %) in April. However, NOx emissions remain at somewhat similar values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared to the baseline, possibly due to the timeline of restrictions. Comparisons against surface monitoring stations indicate that the constrained model underrepresents the reduction in surface NO2. This underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring in polluted areas are described fairly well by the model (model: −21 ± 17 %, observation: −29 ± 21 %). The observational constraint on VOC emissions is found to be generally weak except for lower latitudes. Results support an increase in surface ozone during the lockdown. In April, the constrained model features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes observed at the surface (r=0.43), specifically over central Europe where ozone enhancements prevail (model: +3.73 ± 3.94 %, +1.79 ppbv, observation: +7.35 ± 11.27 %, +3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) decrease MDA8 surface ozone in the same month on average by −4.83 ppbv, while ozone production rates dampened by largely negative JNO2[NO2]-kNO+O3[NO][O3] become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions suggest that meteorology contributes to 42 % enhancement in MDA8 surface ozone over the same region with the remaining part (58 %) coming from changes in anthropogenic emissions. Results illustrate the capability of satellite data of major ozone precursors to help atmospheric models capture ozone changes induced by abrupt emission anomalies.


2017 ◽  
Vol 17 (22) ◽  
pp. 13669-13680 ◽  
Author(s):  
Peter M. Edwards ◽  
Mathew J. Evans

Abstract. Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.


2015 ◽  
Vol 15 (11) ◽  
pp. 6047-6068 ◽  
Author(s):  
S. R. Arnold ◽  
L. K. Emmons ◽  
S. A. Monks ◽  
K. S. Law ◽  
D. A. Ridley ◽  
...  

Abstract. We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (> 50° N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, ΔO3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.47 to 7.00 pptv ppbv−1) than GEOS5-forced models (1.87 to 3.28 pptv ppbv−1), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.


2018 ◽  
Author(s):  
Tim Butler ◽  
Aurelia Lupascu ◽  
Jane Coates ◽  
Shuai Zhu

Abstract. A system for source attribution of tropospheric ozone produced from both NOx and VOC precursors is described, along with its implementation in the Community Earth System Model (CESM) version 1.2.2 using CAM4. The user can specify an arbitrary number of tag identities for each NOx or VOC species in the model, and the tagging system rewrites the model chemical mechanism and source code to incorporate tagged tracers and reactions representing these tagged species, as well as ozone produced in the stratosphere. If the user supplies emission files for the corresponding tagged tracers, the model will produce tagged ozone tracers which represent the contribution of each of the tag identities to the modelled total tropospheric ozone. Our tagged tracers preserve Ox. The size of the tagged chemical mechanism scales linearly with the number of specified tag identities. Separate simulations are required for NOx and VOC tagging, which avoids the sharing of tag identities between NOx and VOC species. Results are presented and evaluated for both NOx and VOC source attribution. We show that northern hemispheric surface ozone is dominated year-round by anthropogenic emissions of NOx, but that the mix of corresponding VOC precursors changes over the course of the year; anthropogenic VOC emissions contribute significantly to surface ozone in winter-spring, while biogenic VOC are more important in summer. The system described here can provide important diagnostic information about modelled ozone production, and could be used to construct source-receptor relationships for tropospheric ozone.


2010 ◽  
Vol 3 (4) ◽  
pp. 2291-2314
Author(s):  
G. Sarwar ◽  
K. W. Appel ◽  
A. G. Carlton ◽  
R. Mathur ◽  
K. Schere ◽  
...  

Abstract. A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.


Sign in / Sign up

Export Citation Format

Share Document