scholarly journals The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties – Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation

2011 ◽  
Vol 11 (24) ◽  
pp. 13145-13159 ◽  
Author(s):  
M. H. Barley ◽  
D. Topping ◽  
D. Lowe ◽  
S. Utembe ◽  
G. McFiggans

Abstract. Calculations of the absorptive partitioning of secondary organic aerosol components were carried out using a number of methods to estimate vapour pressure and non-ideality. The sensitivity of predicted condensed component masses, volatility, O:C ratio, molar mass and functionality distribution to the choice of estimation methods was investigated in mixtures of around 2700 compounds generated by a near explicit mechanism of atmospheric VOC degradation. The sensitivities in terms of all metrics were comparable to those previously reported (using 10 000 semi-randomly generated compounds). In addition, the change in predicted aerosol properties and composition with changing VOC emission scenario was investigated showing key dependencies on relative anthropogenic and biogenic contributions. Finally, the contribution of non-ideality to the changing distribution of condensed components was explored in terms of the shift in effective volatility by virtue of component activity coefficients, clearly demonstrating both enhancement and reduction of component masses associated with negative and positive deviations from ideality.

2011 ◽  
Vol 11 (7) ◽  
pp. 21055-21090 ◽  
Author(s):  
M. H. Barley ◽  
D. Topping ◽  
D. Lowe ◽  
S. Utembe ◽  
G. McFiggans

Abstract. Calculations of the absorptive partitioning of secondary organic aerosol components were carried out using a number of methods to estimate vapour pressure and non-ideality. The sensitivity of predicted condensed component masses, volatility, O:C ratio, molar mass and functionality distribution to the choice of estimation methods was investigated in mixtures of around 2700 compounds generated by a near explicit mechanism of atmospheric VOC degradation. The sensitivities in terms of all metrics were comparable to those previously reported (using 10 000 semi-randomly generated compounds). In addition, the change in predicted aerosol properties and composition with changing VOC emission scenario was investigated showing key dependencies on relative anthropogenic and biogenic contributions. Finally, the contribution of non-ideality to the changing distribution of condensed components was explored in terms of the shift in effective volatility by virtue of component activity coefficients, clearly demonstrating both enhancement and reduction of component masses associated with negative and positive deviations from ideality.


2014 ◽  
Vol 14 (23) ◽  
pp. 13189-13204 ◽  
Author(s):  
F. Wania ◽  
Y. D. Lei ◽  
C. Wang ◽  
J. P. D. Abbatt ◽  
K.-U. Goss

Abstract. Several methods have been presented in the literature to predict an organic chemical's equilibrium partitioning between the water insoluble organic matter (WIOM) component of aerosol and the gas phase, Ki,WIOM, as a function of temperature. They include (i) polyparameter linear free energy relationships calibrated with empirical aerosol sorption data, as well as (ii) the solvation models implemented in SPARC and (iii) the quantum-chemical software COSMOtherm, which predict solvation equilibria from molecular structure alone. We demonstrate that these methods can be used to predict Ki,WIOM for large numbers of individual molecules implicated in secondary organic aerosol (SOA) formation, including those with multiple functional groups. Although very different in their theoretical foundations, these methods give remarkably consistent results for the products of the reaction of normal alkanes with OH, i.e. their partition coefficients Ki,WIOM generally agree within one order of magnitude over a range of more than ten orders of magnitude. This level of agreement is much better than that achieved by different vapour pressure estimation methods that are more commonly used in the SOA community. Also, in contrast to the agreement between vapour pressure estimates, the agreement between the Ki,WIOM estimates does not deteriorate with increasing number of functional groups. Furthermore, these partitioning coefficients Ki,WIOM predicted SOA mass yields in agreement with those measured in chamber experiments of the oxidation of normal alkanes. If a Ki,WIOM prediction method was based on one or more surrogate molecules representing the solvation properties of the mixed OM phase of SOA, the choice of those molecule(s) was found to have a relatively minor effect on the predicted Ki,WIOM, as long as the molecule(s) are not very polar. This suggests that a single surrogate molecule, such as 1-octanol or a hypothetical SOA structure proposed by Kalberer et al. (2004), may often be sufficient to represent the WIOM component of the SOA phase, greatly simplifying the prediction. The presented methods could substitute for vapour-pressure-based methods in studies such as the explicit modelling of SOA formation from single precursor molecules in chamber experiments.


2014 ◽  
Vol 14 (15) ◽  
pp. 21341-21385 ◽  
Author(s):  
F. Wania ◽  
Y. D. Lei ◽  
C. Wang ◽  
J. P. D. Abbatt ◽  
K.-U. Goss

Abstract. Several methods have been presented in the literature to predict an organic chemical's equilibrium partitioning between the water insoluble organic matter (WIOM) component of aerosol and the gas phase, Ki, WIOM as a function of temperature. They include (i) polyparameter linear free energy relationships calibrated with empirical aerosol sorption data, as well as (ii) the solvation models implemented in SPARC and (iii) the quantum-chemical software Cosmotherm, which predict solvation equilibria from molecular structure alone. We demonstrate that these methods can be used to predict Ki, WIOM for large numbers of individual molecules implicated in secondary organic aerosol (SOA) formation, including those with multiple functional groups. Although very different in their theoretical foundations, these methods give remarkably consistent results for the products of the reaction of normal alkanes with OH, i.e. their partition coefficients Ki, WIOM generally agree within one order of magnitude over a range of more than ten orders of magnitude. This level of agreement is much better than that achieved by different vapour pressure estimation methods that are more commonly used in the SOA community. Also, in contrast to the agreement between vapour pressure estimates, that between the Ki, WIOM estimates does not deteriorate with increasing number of functional groups. Furthermore, these partitioning coefficients Ki, WIOM are found to predict the SOA mass yield in chamber experiments of the oxidation of normal alkanes as good or better than a vapour pressure based method. If a Ki, WIOM prediction method was based on one or more surrogate molecules representing the solvation properties of the mixed OM phase of SOA, the choice of those molecule(s) was found to have a relatively minor effect on the predicted Ki, WIOM, as long as the molecule(s) are not very polar. This suggests that a single surrogate molecule, such as 1-octanol or a hypothetical SOA structure proposed by Kalberer et al. (2004), may often be sufficient to represent the WIOM component of the SOA phase, greatly simplifying the prediction. The presented methods could substitute for vapour pressure based methods in studies such as the explicit modeling of SOA formation from single precursor molecules in chamber experiments or the assignment of SOA-forming molecules to volatility basis sets.


2011 ◽  
Vol 11 (16) ◽  
pp. 8385-8394 ◽  
Author(s):  
S. Compernolle ◽  
K. Ceulemans ◽  
J.-F. Müller

Abstract. Multicomponent organic aerosol (OA) is likely to be liquid, or partially liquid. Hence, to describe the partitioning of these components, their liquid vapour pressure is desired. Functionalised acids (e.g. diacids) can be a significant part of OA. But often measurements are available only for solid state vapour pressure, which can differ by orders of magnitude from their liquid counterparts. To convert such a sublimation pressure to a subcooled liquid vapour pressure, fusion properties (two out of these three quantities: fusion enthalpy, fusion entropy, fusion temperature) are required. Unfortunately, experimental knowledge of fusion properties is sometimes missing in part or completely, hence an estimation method is required. Several fusion data estimation methods are tested here against experimental data of functionalised acids, and a simple estimation method is developed, specifically for this family of compounds, with a significantly smaller estimation error than the literature methods.


2010 ◽  
Vol 10 (2) ◽  
pp. 749-767 ◽  
Author(s):  
M. H. Barley ◽  
G. McFiggans

Abstract. A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa) of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.


2009 ◽  
Vol 9 (5) ◽  
pp. 18375-18416 ◽  
Author(s):  
M. H. Barley ◽  
G. McFiggans

Abstract. A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa) of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.


2014 ◽  
Vol 7 (1) ◽  
pp. 379-429 ◽  
Author(s):  
F. Couvidat ◽  
K. Sartelet

Abstract. The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).


2007 ◽  
Vol 7 (21) ◽  
pp. 5599-5610 ◽  
Author(s):  
M. Camredon ◽  
B. Aumont ◽  
J. Lee-Taylor ◽  
S. Madronich

Abstract. Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.


2015 ◽  
Vol 8 (4) ◽  
pp. 1111-1138 ◽  
Author(s):  
F. Couvidat ◽  
K. Sartelet

Abstract. In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation–evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation–evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation–evaporation (no significant differences after a few hours of condensation).


Sign in / Sign up

Export Citation Format

Share Document