scholarly journals Quantification of structural uncertainty in climate data records from GPS radio occultation

2013 ◽  
Vol 13 (3) ◽  
pp. 1469-1484 ◽  
Author(s):  
A. K. Steiner ◽  
D. Hunt ◽  
S.-P. Ho ◽  
G. Kirchengast ◽  
A. J. Mannucci ◽  
...  

Abstract. Global Positioning System (GPS) radio occultation (RO) has provided continuous observations of the Earth's atmosphere since 2001 with global coverage, all-weather capability, and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS). Precise time measurements enable long-term stability but careful processing is needed. Here we provide climate-oriented atmospheric scientists with multicenter-based results on the long-term stability of RO climatological fields for trend studies. We quantify the structural uncertainty of atmospheric trends estimated from the RO record, which arises from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz. Monthly-mean zonal-mean fields of bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature from the CHAMP mission are compared for September 2001 to September 2008. We find that structural uncertainty is lowest in the tropics and mid-latitudes (50° S to 50° N) from 8 km to 25 km for all inspected RO variables. In this region, the structural uncertainty in trends over 7 yr is <0.03% for bending angle, refractivity, and pressure, <3 m for geopotential height of pressure levels, and <0.06 K for temperature; low enough for detecting a climate change signal within about a decade. Larger structural uncertainty above about 25 km and at high latitudes is attributable to differences in the processing schemes, which undergo continuous improvements. Though current use of RO for reliable climate trend assessment is bound to 50° S to 50° N, our results show that quality, consistency, and reproducibility are favorable in the UTLS for the establishment of a climate benchmark record.

2012 ◽  
Vol 12 (10) ◽  
pp. 26963-26994 ◽  
Author(s):  
A. K. Steiner ◽  
D. Hunt ◽  
S.-P. Ho ◽  
G. Kirchengast ◽  
A. J. Mannucci ◽  
...  

Abstract. Global Positioning System (GPS) radio occultation (RO) provides continuous observations of the Earth's atmosphere since 2001 with global coverage, all-weather capability, and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS). Precise time measurements enable long-term stability but careful processing is needed. Here we provide climate-oriented atmospheric scientists with multicenter-based results on the long-term stability of RO climatological fields for trend studies. We quantify the structural uncertainty of atmospheric trends estimated from the RO record, which arises from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz. Monthly-mean zonal-mean fields of bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature from the CHAMP mission are compared for September 2001 to September 2008. We find that structural uncertainty is lowest in the tropics and mid-latitudes (50° S to 50° N) from 8 km to 25 km for all inspected RO variables. In this region, the structural uncertainty in trends over 7 yr is <0.03% f or bending angle, refractivity, and pressure, <3 m for geopotential height of pressure levels, and <0.06 K for temperature; low enough for detecting a climate change signal within about a decade. Larger structural uncertainty above about 25 km and at high latitudes is attributable to differences in the processing schemes, which undergo continuous improvements. Though current use of RO for reliable climate trend assessment is bound to 50° S to 50° N, our results show that quality, consistency, and reproducibility are favorable in the UTLS for the establishment of a climate benchmark record.


2019 ◽  
Author(s):  
Andrea K. Steiner ◽  
Florian Ladstädter ◽  
Chi O. Ao ◽  
Hans Gleisner ◽  
Shu-Peng Ho ◽  
...  

Abstract. Atmospheric climate monitoring requires observations of high-quality conforming to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences, aggregated to monthly means. Structural uncertainty in trends is found lowest from 8 km to 25 km altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP while data from the other missions are based on advanced receivers and are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.


2020 ◽  
Vol 13 (5) ◽  
pp. 2547-2575 ◽  
Author(s):  
Andrea K. Steiner ◽  
Florian Ladstädter ◽  
Chi O. Ao ◽  
Hans Gleisner ◽  
Shu-Peng Ho ◽  
...  

Abstract. Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP, while data from the other missions – based on advanced receivers – are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.


2014 ◽  
Vol 7 (11) ◽  
pp. 11735-11769
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
M. Schwärz ◽  
G. Kirchengast

Abstract. Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Very good agreement is found between all three datasets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.


2018 ◽  
Vol 33 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
Ji-Hyun Ha ◽  
Jeon-Ho Kang ◽  
Suk-Jin Choi

Abstract The sensitivity of GPS radio occultation (GPSRO) bending angle assimilation to vertical resolution was studied within a global three-dimensional variational data assimilation (3DVAR) system. The sensitivity experiments were performed using different vertical resolutions of GPSRO data at 2 km, 1 km, 500 m, and 200 m. The assimilation of the higher vertical resolution GPSRO data showed better consistency in the analysis–forecast cycle in terms of the differences between GPSRO bending angle data and 6-h forecasts (O-F). This resulted in an improved analysis of the temperature, geopotential height, and wind in the mid-/upper-level troposphere by the hydrostatic response and the related model dynamics. It should be noted that the highest vertical resolution of the GPSRO data (200 m in this study) improved the forecasting skill level in terms of the root-mean-square error (against the European Centre for Medium-Range Weather Forecasts analysis) and the anomaly correlation of the geopotential height forecasting at 500 and 200 hPa in both the Northern and Southern Hemispheres. The benefits of assimilating higher vertical resolution GPSRO data were more pronounced in the upper-level troposphere, which was in agreement with previous studies using real GPSRO observations.


2011 ◽  
Vol 4 (3) ◽  
pp. 2599-2633 ◽  
Author(s):  
B. Scherllin-Pirscher ◽  
A. K. Steiner ◽  
G. Kirchengast ◽  
Y.-H. Kuo ◽  
U. Foelsche

Abstract. The utilization of radio occultation (RO) data in atmospheric studies requires precise knowledge of error characteristics. We present results of an empirical error analysis of GPS radio occultation (RO) bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature. We find very good agreement between data characteristics of different missions (CHAMP, GRACE-A, and Formosat-3/COSMIC (F3C)). In the global mean, observational errors (standard deviation from "true" profiles at mean tangent point location) agree within 0.3 % in bending angle, 0.1 % in refractivity, and 0.2 K in dry temperature at all altitude levels between 4 km and 35 km. Above ≈20 km, the observational errors show a strong seasonal dependence at high latitudes. Larger errors occur in hemispheric wintertime and are associated mainly with background data used in the retrieval process. The comparison between UCAR and WEGC results (both data centers have independent inversion processing chains) reveals different magnitudes of observational errors in atmospheric parameters, which are attributable to different background fields used. Based on the empirical error estimates, we provide a simple analytical error model for GPS RO atmospheric parameters and account for vertical, latitudinal, and seasonal variations. In the model, which spans the altitude range from 4 km to 35 km, a constant error is adopted around the tropopause region amounting to 0.8 % for bending angle, 0.35 % for refractivity, 0.15 % for dry pressure, 10 m for dry geopotential height, and 0.7 K for dry temperature. Below this region the observational error increases following an inverse height power-law and above it increases exponentially. The observational error model is the same for UCAR and WEGC data but due to somewhat different error characteristics below about 10 km and above about 20 km some parameters have to be adjusted. Overall, the observational error model is easily applicable and adjustable to individual error characteristics.


2015 ◽  
Vol 8 (4) ◽  
pp. 1819-1834 ◽  
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
M. Schwärz ◽  
G. Kirchengast

Abstract. Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Overall very good agreement is found between all three data sets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO, up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.


Sign in / Sign up

Export Citation Format

Share Document