scholarly journals Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China

2017 ◽  
Vol 17 (8) ◽  
pp. 5439-5457 ◽  
Author(s):  
Shi Zhong ◽  
Yun Qian ◽  
Chun Zhao ◽  
Ruby Leung ◽  
Hailong Wang ◽  
...  

Abstract. The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr−1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.

2016 ◽  
Author(s):  
Shi Zhong ◽  
Yun Qian ◽  
Chun Zhao ◽  
Ruby Leung ◽  
Hailong Wang ◽  
...  

Abstract. The WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutants emission on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an Urban Heat Island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d/yr in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city-cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed and the results suggest that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer time scales.


2021 ◽  
Vol 13 (15) ◽  
pp. 8530
Author(s):  
Fei Tao ◽  
Yuchen Hu ◽  
Guoan Tang ◽  
Tong Zhou

The rapid growth of urbanization and population has aggravated the urban heat island (UHI) effect in urban agglomerations. However, because scholars have so far focused mainly on the magnitude of the UHI effect, there is still a lack of research on the quantitative evaluation of the relationship between urban expansion and the degree of the UHI effect from the urban agglomeration perspective. This paper analyzed the spatiotemporal characteristics and the interactive mechanism of the surface urban heat island footprint (SUHI FP) in the Yangtze River Delta urban agglomeration (YRDUA). The summer footprints (FPs) of 27 cities were extracted using a logistics model, and the temporal trend was estimated by a standard deviation ellipse (SDE). Furthermore, the authors used the classical machine-learning k-means algorithm to cluster the temperature attenuation curves to reveal development patterns in different cities. The results showed that the degree of FP expansion during the daytime was more apparent than at night, the area of urban growth positively correlated with a city’s population level, and from 2005 to 2018 (the period of the study), the spatial evolution for all cities showed an overall trend from east to west. These cities were divided roughly into three development patterns by clustering their 2018 temperature attenuation curves. These findings can provide a scientific basis for formulating effective land-use policies by giving a deeper understanding of the spatiotemporal changes in the SUHI FPs and their relationship with land cover in the YRDUA.


2019 ◽  
Vol 9 (12) ◽  
pp. 2683-2696
Author(s):  
Hao Wu ◽  
Tijian Wang ◽  
Qin’geng Wang ◽  
Nicole Riemer ◽  
Yang Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document