synoptic forcing
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 119 (2) ◽  
pp. e2109285119
Author(s):  
Christopher M. Taylor ◽  
Cornelia Klein ◽  
Douglas J. Parker ◽  
France Gerard ◽  
Valiyaveetil Shamsudheen Semeena ◽  
...  

Deforestation affects local and regional hydroclimate through changes in heating and moistening of the atmosphere. In the tropics, deforestation leads to warming, but its impact on rainfall is more complex, as it depends on spatial scale and synoptic forcing. Most studies have focused on Amazonia, highlighting that forest edges locally enhance convective rainfall, whereas rainfall decreases over drier, more extensive, deforested regions. Here, we examine Southern West Africa (SWA), an example of “late-stage” deforestation, ongoing since 1900 within a 300-km coastal belt. From three decades of satellite data, we demonstrate that the upward trend in convective activity is strongly modulated by deforestation patterns. The frequency of afternoon storms is enhanced over and downstream of deforested patches on length scales from 16 to 196 km, with greater increases for larger patches. The results are consistent with the triggering of storms by mesoscale circulations due to landscape heterogeneity. Near the coast, where sea breeze convection dominates the diurnal cycle, storm frequency has doubled in deforested areas, attributable to enhanced land–sea thermal contrast. These areas include fast-growing cities such as Freetown and Monrovia, where enhanced storm frequency coincides with high vulnerability to flash flooding. The proximity of the ocean likely explains why ongoing deforestation across SWA continues to increase storminess, as it favors the impact of mesoscale dynamics over moisture availability. The coastal location of deforestation in SWA is typical of many tropical deforestation hotspots, and the processes highlighted here are likely to be of wider global relevance.


Author(s):  
Peiran Yang ◽  
Zhao Jing ◽  
Bingrong Sun ◽  
Lixin Wu ◽  
Bo Qiu ◽  
...  

AbstractEncountering of energetic ocean eddies and atmosphere storms makes the winter Kuroshio extension a hotspot for air-sea interactions. This second part investigates the regulation of vertical eddy heat transport QT in the winter Kuroshio extension mixed layer by different types of air-sea interactions, including the atmosphere synoptic forcing, eddy thermal feedback resulting from eddy-induced surface heat flux anomalies, and eddy current feedback from eddy current’s imprint on wind stress.Atmosphere synoptic forcing modulates intra-seasonal variation of QT by boosting its component contributed by the turbulent thermal wind balance during strong cooling events associated with intense winds. In addition, the magnitude of QT is influenced by the direction of synoptic wind stress primarily via , with the latter exhibiting enhancement both in the downfront- and upfront-wind forcing. Enhanced by the downfront-wind forcing is attributed to increased turbulent vertical viscosity and front intensity caused by the destabilizing wind-driven Ekman buoyancy flux, whereas interaction of uniform wind stress with smaller turbulent vertical viscosity at the front center than periphery (a so-called internal Ekman pumping) accounts for the increased in the upfront-wind forcing. The eddy thermal feedback reduces QT significantly through weakening the fronts. In contrast, the eddy current feedback exerts negligible influences on QT, although it weakens eddy kinetic energy (EKE) evidently. This is due to the much reduced effect of eddy current feedback in damping the fronts compared to EKE and also due to the compensation from Ekman pumping induced by the eddy current feedback.


2021 ◽  
pp. 105764
Author(s):  
Xiaolan Li ◽  
Yucong Miao ◽  
Yanjun Ma ◽  
Yangfeng Wang ◽  
Yunhai Zhang

2020 ◽  
Vol 20 (24) ◽  
pp. 15851-15865
Author(s):  
Christian Keil ◽  
Lucie Chabert ◽  
Olivier Nuissier ◽  
Laure Raynaud

Abstract. The weather-regime-dependent predictability of precipitation in the convection-permitting kilometric-scale AROME-EPS is examined for the entire HyMeX-SOP1 employing the convective adjustment timescale. This diagnostic quantifies variations in synoptic forcing on precipitation and is associated with different precipitation characteristics, forecast skill and predictability. During strong synoptic control, which dominates the weather on 80 % of the days in the 2-month period, the domain-integrated precipitation predictability assessed with the normalized ensemble standard deviation is above average, the wet bias is smaller and the forecast quality is generally better. In contrast, the pure spatial forecast quality of the most intense precipitation in the afternoon, as quantified with its 95th percentile, is superior during weakly forced synoptic regimes. The study also considers a prominent heavy-precipitation event that occurred during the NAWDEX field campaign in the same region, and the predictability during this event is compared with the events that occurred during HyMeX. It is shown that the unconditional evaluation of precipitation widely parallels the strongly forced weather type evaluation and obscures forecast model characteristics typical for weak control.


2020 ◽  
Vol 148 (12) ◽  
pp. 4703-4728
Author(s):  
Samuel K. Degelia ◽  
Xuguang Wang ◽  
David J. Stensrud ◽  
David D. Turner

AbstractNocturnal convection is often initiated by mechanisms that cannot be easily observed within the large gaps between rawinsondes or by conventional surface networks. To improve forecasts of such events, we evaluate the systematic impact of assimilating a collocated network of high-frequency, ground-based thermodynamic and kinematic profilers collected as part of the 2015 Plains Elevated Convection At Night (PECAN) experiment. For 13 nocturnal convection initiation (CI) events, we find small but consistent improvements when assimilating thermodynamic observations collected by Atmospheric Emitted Radiance Interferometers (AERIs). Through midlevel cooling and moistening, assimilating the AERIs increases the fractions skill score (FSS) for both nocturnal CI and precipitation forecasts. The AERIs also improve various contingency metrics for CI forecasts. Assimilating composite kinematic datasets collected by Doppler lidars and radar wind profilers (RWPs) results in slight degradations to the forecast quality, including decreases in the FSS and traditional contingency metrics. The impacts from assimilating thermodynamic and kinematic profilers often counteract each other, such that we find little impact on the detection of CI when both are assimilated. However, assimilating both datasets improves various properties of the CI events that are successfully detected (timing, distance, shape, etc.). We also find large variability in the impact of assimilating these remote sensing profilers, likely due to the number of observing sites and the strength of the synoptic forcing for each case. We hypothesize that the lack of flow-dependent methods to diagnose observation errors likely contributes to degradations in forecast skill for many cases, especially when assimilating kinematic profilers.


2020 ◽  
Author(s):  
Christian Keil ◽  
Lucie Chabert ◽  
Olivier Nuissier ◽  
Laure Raynaud

Abstract. The weather regime dependent predictability of precipitation in the convection permitting kilometric scale AROME-EPS is examined for the entire HyMeX SOP1 employing the convective adjustment timescale. This diagnostic quantifies variations in synoptic forcing on precipitation and is associated with different precipitation characteristics, forecast skill and predictability. During strong synoptic control, which is dominating the weather on 80 % of the days in the 2-months period, the domain integrated precipitation predictability assessed with the normalized ensemble standard deviation is above average, the wet bias is smaller and the forecast quality is generally better. In contrast, the spatial forecast quality of most intense precipitation in the afternoon, as quantified with its 95th percentiles, is superior during weakly forced synoptic regimes. The study also considers a prominent heavy precipitation event that occurred during the NAWDEX field campaign in the same region, and the predictability during this event is compared with the events that occurred during HyMeX. It is shown that the unconditional evaluation of precipitation widely parallels the strongly forced weather type evaluation and obscures forecast model characteristics typical for weak control.


2020 ◽  
Author(s):  
Jan Stryhal ◽  
Eva Plavcová

<p>The self-organizing maps (SOMs) have become a widespread tool for studying atmospheric circulation and its links to weather elements. The SOMs do not only produce a classification, but also a topology-preserving representation of the input data—a 2D array of circulation types (CTs). Consequently, one can analyse not only CT frequencies, persistence, and their conditioning of weather elements, but also visualise these parameters in a “continuum” of representative patterns. This latter characteristic makes it in theory plausible to define a (considerably) larger number of CTs compared to other classification approaches, and thus better represent extremes of circulation variability, without necessarily compromising the utility of the output by making it unintelligible.</p><p>Here, we investigate whether increasing the number of CTs (enlarging the SOM) leads to a classification better suitable to study synoptic forcing of extreme weather, and, in particular, what the effect is of various SOM parameters, which have to be chosen a priori more or less subjectively—such as array shape and size, radius and function of neighbourhood, learning rate, and initialization—on the utility of the resulting classification. Furthermore, we present the Sammon mapping, typically used to evaluate the topological structure of SOMs, as a standalone classification tool that shares some of the advantages with SOMs while potentially circumventing some of their weaknesses.</p>


2020 ◽  
Author(s):  
Félix García-Pereira ◽  
Gregorio Maqueda

<p>In this work, a micrometeorological assessment of Atmospheric Boundary Layer paremeters is carried out in order to determine the characteristic turbulent scales over complex terrain in the Sierra de Guadarrama, a range in central Spain. Observational data series of temperature and wind velocity measured at high frecuency (10 Hz) are available. These data come from two different stations located in the Bosque de La Herrería and belonging to GuMNet (2020) (Guadarrama Monitoring Network).</p><p>Integral scales, both time and spatial, have been determined for different atmospheric conditions, defined by parameters such as wind direction or stability of stratification. Also, energy cascade phenomenon occurence is assessed. In order to carry this out, different time series analysis tools are used, such as autocorrelation functions in time, and normalised power spectra or wavelets. Results obtained are compared with previous works.</p><p>In general, results show that under no synoptic forcing there is a clear dependency on diurnal cycle, giving rise to the development of big integral scales at nighttime, while they are small during the day. When synoptic forcing prevails, the scales are also small, both at daytime and nighttime. Moreover, a correlation patterns method has been implemented for scales obtained at two different heights (4 and 8 meters) on the one hand and at two locations on the other. In the first case, integral scales are highly correlated, exceeding the threshold of 0.5. In the second case, temporal scales show high correlation values, but spatial ones do not.  In addition, the slopes of the spectra in the inertial subrange have  been obtained and compared to those over homogeneous terrain (Kaimal et al., 1972), getting similar results for velocity turbulent components but not in case of vertical kinematic momentum and heat fluxes.</p><p> </p><p><strong>References</strong></p><p>GuMNet: Guadarrama Monitoring Network (UCM), https://www.ucm.es/gumnet/, 2020.</p><p>Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral characteristics of surface- layer turbulence, Quart. J. R. Met. Soc., 98, 563–589, 1972.</p>


Sign in / Sign up

Export Citation Format

Share Document