scholarly journals Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations

2017 ◽  
Vol 17 (2) ◽  
pp. 899-910 ◽  
Author(s):  
Bianca Adler ◽  
Norbert Kalthoff ◽  
Leonhard Gantner

Abstract. We performed a high-resolution numerical simulation to study the development of extensive low-level clouds that frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Savè in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere caused by horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to test the hypotheses for cloud formation resulting from this study.

2016 ◽  
Author(s):  
Bianca Adler ◽  
Norbert Kalthoff ◽  
Leonhard Gantner

Abstract. We performed a high-resolution numerical simulation to study the life cycle of extensive low-level clouds which frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Save in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere due to horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to the test the hypotheses for cloud formation resulting from this study.


2019 ◽  
Vol 19 (13) ◽  
pp. 8979-8997 ◽  
Author(s):  
Cheikh Dione ◽  
Fabienne Lohou ◽  
Marie Lothon ◽  
Bianca Adler ◽  
Karmen Babić ◽  
...  

Abstract. During the boreal summer, the monsoon season that takes place in West Africa is accompanied by low stratus clouds over land that stretch from the Guinean coast several hundred kilometers inland. Numerical climate and weather models need finer description and knowledge of cloud macrophysical characteristics and of the dynamical and thermodynamical structures occupying the lowest troposphere, in order to be properly evaluated in this region. The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field experiment, which took place in summer 2016, addresses this knowledge gap. Low-level atmospheric dynamics and stratiform low-level cloud macrophysical properties are analyzed using in situ and remote sensing measurements continuously collected from 20 June to 30 July at Savè, Benin, roughly 180 km from the coast. The macrophysical characteristics of the stratus clouds are deduced from a ceilometer, an infrared cloud camera, and cloud radar. Onset times, evolution, dissipation times, base heights, and thickness are evaluated. The data from an ultra-high-frequency (UHF) wind profiler, a microwave radiometer, and an energy balance station are used to quantify the occurrence and characteristics of the monsoon flow, the nocturnal low-level jet, and the cold air mass inflow propagating northward from the coast of the Gulf of Guinea. The results show that these dynamical structures are very regularly observed during the entire 41 d documented period. Monsoon flow is observed every day during our study period. The so-called “maritime inflow” and the nocturnal low-level jet are also systematic features in this area. According to synoptic atmospheric conditions, the maritime inflow reaches Savè around 18:00–19:00 UTC on average. This timing is correlated with the strength of the monsoon flow. This time of arrival is close to the time range of the nocturnal low-level jet settlement. As a result, these phenomena are difficult to distinguish at the Savè site. The low-level jet occurs every night, except during rain events, and is associated 65 % of the time with low stratus clouds. Stratus clouds form between 22:00 and 06:00 UTC at an elevation close to the nocturnal low-level jet core height. The cloud base height, 310±30 m above ground level (a.g.l.), is rather stationary during the night and remains below the jet core height. The cloud top height, at 640±100 m a.g.l., is typically found above the jet core. The nocturnal low-level jet, low-level stratiform clouds, monsoon flow, and maritime inflow reveal significant day-to-day and intra-seasonal variability during the summer given the importance of the different monsoon phases and synoptic atmospheric conditions. Distributions of strength, depth, onset time, breakup time, etc. are quantified here. These results contribute to satisfy the main goals of DACCIWA and allow a conceptual model of the dynamical structures in the lowest troposphere over the southern part of West Africa.


2018 ◽  
Author(s):  
Cheikh Dione ◽  
Fabienne Lohou ◽  
Marie Lothon ◽  
Bianca Adler ◽  
Karmen Babić ◽  
...  

Abstract. During the Boreal summer, the monsoon season that takes place in West Africa is accompanied by low stratus clouds over land, that stretch from the Guinean coast several hundred kilometers inland. These clouds form during the night and dissipate during the following day. Inherently linked with the diurnal cycle of monsoon flow, those clouds still remain poorly documented and understood.Moreover, numerical climate and weather models lack fine quantitative documentation of cloud macrophysical characteristics and the dynamical and thermodynamical structures occupying the lowest troposphere. The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) field experiment, which took place in summer 2016, addresses this knowledge gap. Low level atmospheric dynamics and low-level cloud macrophysical properties are analyzed using in-situ and remote sensing continuous measurements collected from 20 June to 30 July at Savè, Benin, roughly 180 km from the coast. The macrophysical characteristics of the stratus clouds are deduced from a ceilometer, an infrared cloud camera and cloud radar. Onset times, evolution, dissipation times, base heights and thickness are evaluated. The Data from a UHF (Ultra High Frequency) wind profiler, a microwave radiometer and an energy balance station are used to quantify the occurrence and characteristics of the monsoon flow, the nocturnal low-level jet and the cold air mass inflow propagating northwards from the coast of the Gulf of Guinea. The results show that these dynamical structures are very regularly observed during the entire 41-day documented period. Monsoon flow is observed 100 % of the time. The so-called maritime inflow and the nocturnal low level jet are also systematic features in this area. According to monsoon flow conditions, the maritime inflow reaches Savè around 18:00–19:00 UTC on average: this timing is correlated with the strength of the monsoon flow. This time of arrival is close to the time range of the nocturnal low level jet settlement. As a result, these phenomena are difficult to distinguish at the Savè site. The low level jet occurs every night, except during rain events, and is associated 65 % of the time with low stratus clouds. Stratus cloud form between 22:00 UTC and 06:00 UTC at an elevation close to the nocturnal low level jet core height. The cloud base height, 310 ± 30 m above ground level (a.g.l.) is rather stationary during the night and remains below the jet core height. The cloud top height, at 640 ± 100 m a.g.l., is typically found above the jet core. The nocturnal low level jet, low level clouds, monsoon flow and maritime inflow reveal significant day-to-day variability during the summer. Distributions of strength, depth, onset time, break up time, etc. are quantified here.


2012 ◽  
Vol 140 (6) ◽  
pp. 1794-1809 ◽  
Author(s):  
Jon M. Schrage ◽  
Andreas H. Fink

Abstract Some spatiotemporal characteristics and possible mechanisms controlling the onset of the widespread, low-level nocturnal stratiform clouds that formed during May–October 2006 over southern tropical West Africa are investigated using cloudiness observations from surface weather stations, data from various satellite platforms, and surface-based remote sensing profiles at Nangatchori in central Benin. It is found that the continental stratus is lower than the maritime stratus over the Gulf of Guinea and persists well into the noon hours. For the study period, a clear seasonal cycle was documented, as well as a dependence on latitude with the cloudiest zone north of the coastal zone and south of approximately 9°N. It is also shown that nonprecipitating clear and cloudy nights observed at Nangatchori in central Benin often reflect clearer and cloudier than normal conditions over a wide region of southern West Africa. At Nangatchori, on average the stratus developed at 0236 UTC (about local time) with an extremely low cloud base at 172 m (above ground level) when averaged over all cloudy nights. About 2–3 h before cloudiness onset, a distinct nighttime low-level jet formed that promoted static destabilization and a low Richardson number flow underneath it. The ensuing vertical upward mixing of moisture that accumulated under the near-surface inversion after sunset caused the cloud formation. It is argued that a strong shear underneath the nighttime low-level jet is the major process for cloud formation, but the low-level static stability and the time scale of the shear-driven mixing are other potential factors.


2019 ◽  
Vol 19 (21) ◽  
pp. 13489-13506 ◽  
Author(s):  
Karmen Babić ◽  
Norbert Kalthoff ◽  
Bianca Adler ◽  
Julian F. Quinting ◽  
Fabienne Lohou ◽  
...  

Abstract. Nocturnal low-level stratus clouds (LLCs) are frequently observed in the atmospheric boundary layer (ABL) over southern West Africa (SWA) during the summer monsoon season. Considering the effect these clouds have on the surface energy and radiation budgets as well as on the diurnal cycle of the ABL, they are undoubtedly important for the regional climate. However, an adequate representation of LLCs in the state-of-the-art weather and climate models is still a challenge, which is largely due to the lack of high-quality observations in this region and gaps in understanding of underlying processes. In several recent studies, a unique and comprehensive data set collected in summer 2016 during the DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa) ground-based field campaign was used for the first observational analyses of the parameters and physical processes relevant for the LLC formation over SWA. However, occasionally stratus-free nights occur during the monsoon season as well. Using observations and ERA5 reanalysis, we investigate differences in the boundary-layer conditions during 6 stratus-free and 20 stratus nights observed during the DACCIWA campaign. Our results suggest that the interplay between three major mechanisms is crucial for the formation of LLCs during the monsoon season: (i) the onset time and strength of the nocturnal low-level jet (NLLJ), (ii) horizontal cold-air advection, and (iii) background moisture level. Namely, weaker or later onset of NLLJ leads to a reduced contribution from horizontal cold-air advection. This in turn results in weaker cooling, and thus saturation is not reached. Such deviation in the dynamics of the NLLJ is related to the arrival of a cold air mass propagating northwards from the coast, called Gulf of Guinea maritime inflow. Additionally, stratus-free nights occur when the intrusions of dry air masses, originating from, for example, central or south Africa, reduce the background moisture over large parts of SWA. Backward-trajectory analysis suggests that another possible reason for clear nights is descending air, which originated from drier levels above the marine boundary layer.


2018 ◽  
Vol 18 (19) ◽  
pp. 14253-14269 ◽  
Author(s):  
Christopher Dearden ◽  
Adrian Hill ◽  
Hugh Coe ◽  
Tom Choularton

Abstract. Large-eddy simulations are performed to investigate the influence of cloud microphysics on the evolution of low-level clouds that form over southern West Africa during the monsoon season. We find that, even in clouds that are not precipitating, the size of cloud droplets has a non-negligible effect on liquid water path. This is explained through the effects of droplet sedimentation, which acts to remove liquid water from the entrainment zone close to cloud top, increasing the liquid water path. Sedimentation also produces a more heterogeneous cloud structure and lowers cloud base height. Our results imply that an appropriate parameterization of the effects of sedimentation is required to improve the representation of the diurnal cycle of the atmospheric boundary layer over southern West Africa in large-scale models.


2019 ◽  
Author(s):  
Karmen Babić ◽  
Norbert Kalthoff ◽  
Bianca Adler ◽  
Julian F. Quinting ◽  
Fabienne Lohou ◽  
...  

Abstract. Nocturnal low-level stratus clouds (LLC) are frequently observed in the atmospheric boundary layer (ABL) over southern West Africa (SWA) during the summer monsoon season. Considering the effect these clouds have on the surface energy and radiation budgets as well as on the diurnal cycle of the ABL, they are undoubtedly important for the regional climate. However, an adequate representation of LLC in the state–of–the–art weather and climate models is still a challenge, which is largely due to the lack of high-quality observations in this region. In several recent studies, a unique and comprehensive data set collected in summer 2016 during the DACCIWA (Dynamics-Aerosol-Cloud-Chemistry Interactions in West Africa) ground-based field campaign was used for the first observational analyses of the parameters and physical processes relevant for the LLC formation over SWA. However, occasionally stratus-free nights occur during the monsoon season as well. Using observations and ERA5 reanalysis, we investigate differences in the boundary layer conditions during 6 stratus-free and 20 stratus nights observed during the DACCIWA campaign. Our results suggest that the interplay between three major mechanisms is crucial for the formation of LLC during the monsoon season: (i) the onset time and strength of the nocturnal low-level jet (NLLJ), (ii) horizontal cold-air advection and (iii) background moisture level. Namely, weaker or later onset of NLLJ leads to reduced contribution from horizontal cold-air advection. This in turn results in a weaker cooling and thus saturation is not reached. Such deviation in the dynamics of NLLJ is related to the arrival of cold air mass propagating northwards from the coast called Gulf of Guinea maritime inflow. Additionally, stratus-free nights occur when the intrusions of dry air masses, originating from e.g. central or south Africa, reduce the background moisture over the large parts of SWA. Based on the backward trajectories analysis, another possible reason for clear nights is descending of air originating from drier levels above the marine boundary layer.


Sign in / Sign up

Export Citation Format

Share Document