scholarly journals The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska

2018 ◽  
Vol 18 (2) ◽  
pp. 555-570 ◽  
Author(s):  
Jessie M. Creamean ◽  
Maximilian Maahn ◽  
Gijs de Boer ◽  
Allison McComiskey ◽  
Arthur J. Sedlacek ◽  
...  

Abstract. The Arctic is warming at an alarming rate, yet the processes that contribute to the enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget, both directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft. Here, we report on airborne observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) field campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.

2017 ◽  
Author(s):  
Jessie M. Creamean ◽  
Maximilian Maahn ◽  
Gijs de Boer ◽  
Allison McComiskey ◽  
Arthur J. Sedlacek ◽  
...  

Abstract. The Arctic is warming at an alarming rate, yet the processes that contribute to enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly-changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft. Here, we report on airborne observations from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015’s central Alaskan wildfires, and to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.


2020 ◽  
Author(s):  
Kaare Sikuaq Erickson ◽  
Donatella Zona ◽  
Marco Montemayor ◽  
Walter Oechel ◽  
Terenzio Zenone

<p>The Alaskan Ukpeaġvik Iñupiat Corporation (UIC) is promoting and financilally supporting, with the contribution of the US National Science Foundation (NSF) and local organizations, outreach and dissemination events, in the form of science fair for the local communities in North Slope of Alaska. The science fair is part of a larger effort by UIC Science to bring coordination and collaboration to science outreach and engagement efforts across Arctic Alaska. The purpose is to provide a positive space for Arctic researchers and Arctic residents to meet, eat with each other, spend time, and to inspire the youth of the Arctic by providing fun and educational activities that are based in science and traditional knowledge. The Science Fair 2019 hosted by the Barrow Arctic Research Center (BARC) included three days of youth and family-friendly activities related to “Inupiat Knowledge about Plants” led by the College Inupiat Studies Department, “Eco-chains Activity” hosted by the North Slope Borough Office of Emergency Management, “Big Little World: Bugs Plants, and Microscopes” hosted by the National Ecological Observatory Network, “Microplastics in the Arctic” hosted by the North Slope Borough Department of Wildlife Management, “BARC Scavenger Hunt” hosted by UIC Science, “Our Role in the Carbon and Methane Cycle” hosted by the University of Texas El Paso (UTEP) and San Diego State University, and “How Permafrost Works” hosted by the University of Alaska, Fairbanks, Geophysical Institute. Each day hundreds of students, from both the local community and the science community came together to take part in mutually beneficial engagement: students from Utqiaġvik were excited about science and now know of the realistic and fulfilling careers in research that takes place in their backyard. The Utqiaġvik community members and elders now have a better idea of the breadth of research that takes place in and near their home. The locals, especially the elders, are very concerned about the drastic changes in our environment: scientists share these concerns, and the discussions during the fair was a chance to recognize this common ground. Breaking the ice between Arctic researchers and residents can lead to endless opportunities for collaboration, sharing ideas, and even lifelong friendships.</p><p> </p><p> </p>


2007 ◽  
Vol 24 (3) ◽  
pp. 415-431 ◽  
Author(s):  
V. Mattioli ◽  
E. R. Westwater ◽  
D. Cimini ◽  
J. C. Liljegren ◽  
B. M. Lesht ◽  
...  

Abstract During 9 March–9 April 2004, the North Slope of Alaska Arctic Winter Radiometric Experiment was conducted at the Atmospheric Radiation Measurement Program’s (ARM) “Great White” field site near Barrow, Alaska. The major goals of the experiment were to compare microwave and millimeter wavelength radiometers and to develop forward models in radiative transfer, all with a focus on cold (temperature from 0° to −40°C) and dry [precipitable water vapor (PWV) < 0.5 cm] conditions. To supplement the remote sensors, several radiosonde packages were deployed: Vaisala RS90 launched at the ARM Duplex and at the Great White and Sippican VIZ-B2 operated by the NWS. In addition, eight dual-radiosonde launches were conducted at the Duplex with Vaisala RS90 and Sippican GPS Mark II, the latter one modified to include a chilled mirror humidity sensor. Temperature comparisons showed a nighttime bias between VIZ-B2 and RS90, which reached 3.5°C at 30 hPa. Relative humidity comparisons indicated better than 5% average agreement between the RS90 and the chilled mirror. A bias of about 20% for the upper troposphere was found in the VIZ-B2 and the Mark II measurements relative to both RS90 and the chilled mirror. Comparisons in PWV were made between a microwave radiometer, a microwave profiler, a global positioning system receiver, and the radiosonde types. An RMS agreement of 0.033 cm was found between the radiometer and the profiler and better than 0.058 cm between the radiometers and GPS. RS90 showed a daytime dry bias on PWV of about 0.02 cm.


1994 ◽  
Vol 10 (2) ◽  
pp. 95-108
Author(s):  
Lawrence C. Trostle ◽  
John E. Angell

2021 ◽  
Vol 13 (13) ◽  
pp. 2539
Author(s):  
Helena Bergstedt ◽  
Benjamin M. Jones ◽  
Kenneth Hinkel ◽  
Louise Farquharson ◽  
Benjamin V. Gaglioti ◽  
...  

Lake formation and drainage are pervasive phenomena in permafrost regions. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. In this study, we present a novel and scalable remote sensing-based approach to identifying DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. We validated this first North Slope-wide DLB data product against several previously published sub-regional scale datasets and manually classified points. The study area covered >71,000 km2, including a >39,000 km2 area not previously covered in existing DLB datasets. Our approach used Landsat-8 multispectral imagery and ArcticDEM data to derive a pixel-by-pixel statistical assessment of likelihood of DLB occurrence in sub-regions with different permafrost and periglacial landscape conditions, as well as to quantify aerial coverage of DLBs on the North Slope of Alaska. The results were consistent with previously published regional DLB datasets (up to 87% agreement) and showed high agreement with manually classified random points (64.4–95.5% for DLB and 83.2–95.4% for non-DLB areas). Validation of the remote sensing-based statistical approach on the North Slope of Alaska indicated that it may be possible to extend this methodology to conduct a comprehensive assessment of DLBs in pan-Arctic lowland permafrost regions. Better resolution of the spatial distribution of DLBs in lowland permafrost regions is important for quantitative studies on landscape diversity, wildlife habitat, permafrost, hydrology, geotechnical conditions, and high-latitude carbon cycling.


ARCTIC ◽  
2018 ◽  
Vol 71 (4) ◽  
pp. 365-374
Author(s):  
Anne Merrild Hansen ◽  
Ross A. Virginia

 Although Greenland has pursued hydrocarbon development over the last four decades, no viable reserves have been found to date. Therefore, local Greenland communities have little experience or knowledge of how such development might affect their way of life or how to influence project development and outcomes should a significant reserve be found. On the North Slope of Alaska, in contrast, hydrocarbon extraction was commercialized in the 1970s, and the industry is now highly developed. North Slope residents have experienced dramatic influences on their everyday lives and well-being as a result of large-scale hydrocarbon projects. Some consequences have been welcomed, such as economic development and higher employment rates; however, other impacts are harmful, such as reduced ability of local peoples to maintain subsistence hunting practices. The villages on Alaska’s North Slope share many features in common with settlements in Greenland, such as small size, isolation, and limited political influence. In this study, we explore how Greenlanders might learn from the Alaska experience by examining the comments of North Slope residents. We propose that increased local-to-local recommendation-sharing across the Arctic would better guide sustainable development practices and benefits into potential future projects in Greenland. We conclude that an Arctic “Community Guide” and the process to create one could improve planning and implementation of hydrocarbon projects across the Arctic and promote locally appropriate sustainable development in the affected communities.


2021 ◽  
Vol 14 (2) ◽  
pp. 1205-1224
Author(s):  
Christopher J. Cox ◽  
Sara M. Morris ◽  
Taneil Uttal ◽  
Ross Burgener ◽  
Emiel Hall ◽  
...  

Abstract. Surface-based measurements of broadband shortwave (solar) and longwave (infrared) radiative fluxes using thermopile radiometers are made regularly around the globe for scientific and operational environmental monitoring. The occurrence of ice on sensor windows in cold environments – whether snow, rime, or frost – is a common problem that is difficult to prevent as well as difficult to correct in post-processing. The Baseline Surface Radiation Network (BSRN) community recognizes radiometer icing as a major outstanding measurement uncertainty. Towards constraining this uncertainty, the De-Icing Comparison Experiment (D-ICE) was carried out at the NOAA Atmospheric Baseline Observatory in Utqiaġvik (formerly Barrow), Alaska, from August 2017 to July 2018. The purpose of D-ICE was to evaluate existing ventilation and heating technologies developed to mitigate radiometer icing. D-ICE consisted of 20 pyranometers and 5 pyrgeometers operating in various ventilator housings alongside operational systems that are part of NOAA's Barrow BSRN station and the US Department of Energy Atmospheric Radiation Measurement (ARM) program North Slope of Alaska and Oliktok Point observatories. To detect icing, radiometers were monitored continuously using cameras, with a total of more than 1 million images of radiometer domes archived. Ventilator and ventilator–heater performance overall was skillful with the average of the systems mitigating ice formation 77 % (many >90 %) of the time during which icing conditions were present. Ventilators without heating elements were also effective and capable of providing heat through roughly equal contributions of waste energy from the ventilator fan and adiabatic heating downstream of the fan. This provided ∼0.6 ∘C of warming, enough to subsaturate the air up to a relative humidity (with respect to ice) of ∼105 %. Because the mitigation technologies performed well, a near complete record of verified ice-free radiometric fluxes was assembled for the duration of the campaign. This well-characterized data set is suitable for model evaluation, in particular for the Year of Polar Prediction (YOPP) first Special Observing Period (SOP1). We used the data set to calculate short- and long-term biases in iced sensors, finding that biases can be up to +60 W m−2 (longwave) and −211 to +188 W m−2 (shortwave). However, because of the frequency of icing, mitigation of ice by ventilators, cloud conditions, and the timing of icing relative to available sunlight, the biases in the monthly means were generally less than the aggregate uncertainty attributed to other conventional sources in both the shortwave and longwave.


Sign in / Sign up

Export Citation Format

Share Document