scholarly journals Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing

2019 ◽  
Vol 19 (2) ◽  
pp. 1059-1076 ◽  
Author(s):  
Yvonne Boose ◽  
Philipp Baloh ◽  
Michael Plötze ◽  
Johannes Ofner ◽  
Hinrich Grothe ◽  
...  

Abstract. Mineral dust particles from deserts are amongst the most common ice nucleating particles in the atmosphere. The mineralogy of desert dust differs depending on the source region and can further fractionate during the dust emission processes. Mineralogy to a large extent explains the ice nucleation behavior of desert aerosol, but not entirely. Apart from pure mineral dust, desert aerosol particles often exhibit a coating or are mixed with small amounts of biological material. Aging on the ground or during atmospheric transport can deactivate nucleation sites, thus strong ice nucleating minerals may not exhibit their full potential. In the partner paper of this work, it was shown that mineralogy determines most but not all of the ice nucleation behavior in the immersion mode found for desert dust. In this study, the influence of semi-volatile organic compounds and the presence of crystal water on the ice nucleation behavior of desert aerosol is investigated. This work focuses on the deposition and condensation ice nucleation modes at temperatures between 238 and 242 K of 18 dust samples sourced from nine deserts worldwide. Chemical imaging of the particles' surface is used to determine the cause of the observed differences in ice nucleation. It is found that, while the ice nucleation ability of the majority of the dust samples is dominated by their quartz and feldspar content, in one carbonaceous sample it is mostly caused by organic matter, potentially cellulose and/or proteins. In contrast, the ice nucleation ability of an airborne Saharan sample is found to be diminished, likely by semi-volatile species covering ice nucleation active sites of the minerals. This study shows that in addition to mineralogy, other factors such as organics and crystal water content can alter the ice nucleation behavior of desert aerosol during atmospheric transport in various ways.

2018 ◽  
Author(s):  
Yvonne Boose ◽  
Philipp Baloh ◽  
Michael Plötze ◽  
Johannes Ofner ◽  
Hinrich Grothe ◽  
...  

Abstract. Mineral dust particles from deserts are amongst the most common ice-nucleating particles in the atmosphere. The mineralogy of desert dust differs depending on the source region and can further fractionate during the dust emission processes. Mineralogy to a large extent explains the ice nucleation behavior of desert aerosol, but not entirely. Apart from pure mineral dust, desert aerosol particles are often mixed with small amounts of biological material or particles exhibit a coating. Aging on the ground or during atmospheric transport can deactivate nucleation sites and thus strong ice-nucleating minerals may not exhibit their full potential. In the partner paper of this work, it was shown that mineralogy determines most but not all of the ice nucleation behavior in the immersion mode found for desert dust. In this study, the influence of semi-volatile organic compounds and the presence of crystal water on the ice nucleation behavior of desert aerosol in addition to mineralogy is investigated. This work focuses on the deposition and condensation ice nucleation modes at temperatures between 238 to 242 K of 18 dust samples sources from 9 deserts worldwide. Chemical imaging of the particles' surface is used to determine the cause of the observed differences in ice nucleation. It is found that while the ice nucleation ability of the majority of the dust samples is dominated by their quartz and feldspar content, in one carbonaceous sample it is mostly caused by organic matter, potentially cellulose and/or proteins. On the other hand, the ice nucleation ability of an airborne Saharan sample is found to be diminished likely by semi-volatile species covering ice nucleation active sites of the minerals. This study shows that in addition to mineralogy, other factors such as organics and crystal water content can alter the ice nucleation behavior of desert aerosol during atmospheric transport in various ways.


2019 ◽  
Author(s):  
Alexander D. Harrison ◽  
Katherine Lever ◽  
Alberto Sanchez-Marroquin ◽  
Mark A. Holden ◽  
Thomas F. Whale ◽  
...  

Abstract. Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-feldspar has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 °C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. The sensitivity to water and air is perhaps surprising as quartz is thought of as a chemically resistant material, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the material. We find that the quartz group of minerals are generally less active than K-feldspars, although the most active quartz samples are of a similar activity to some K-feldspars. We also find that the quartz samples are generally more active than the plagioclase feldspar group of minerals and the albite end-member has an intermediate activity. Using both the new and literature data, active site density parameterisations have been proposed for quartz, K-feldspar, plagioclase and albite. Combining these parameterisations with the typical atmospheric abundance of each mineral and comparing the results with atmospheric ice-nucleating particle concentrations, supports previous work that suggests that K-feldspar dominates, rather than quartz (or other minerals), the ice nucleation particle population in desert dust aerosol.


2016 ◽  
Vol 16 (23) ◽  
pp. 15075-15095 ◽  
Author(s):  
Yvonne Boose ◽  
André Welti ◽  
James Atkinson ◽  
Fabiola Ramelli ◽  
Anja Danielczok ◽  
...  

Abstract. Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase.For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance.


2010 ◽  
Vol 10 (23) ◽  
pp. 11471-11487 ◽  
Author(s):  
R. C. Sullivan ◽  
M. D. Petters ◽  
P. J. DeMott ◽  
S. M. Kreidenweis ◽  
H. Wex ◽  
...  

Abstract. During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona Test Dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed particles' heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 °C and −25 °C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 °C – intended to evaporate the sulphuric acid coating – reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability under both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface sites; the possible dissolution of the coating during droplet activation did not restore all immersion/condensation-freezing ability.


2005 ◽  
Vol 5 (3) ◽  
pp. 3391-3436 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between −45 and −60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2016 ◽  
Vol 16 (9) ◽  
pp. 5531-5543 ◽  
Author(s):  
Stefanie Augustin-Bauditz ◽  
Heike Wex ◽  
Cyrielle Denjean ◽  
Susan Hartmann ◽  
Johannes Schneider ◽  
...  

Abstract. Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above −20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility–Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.


2016 ◽  
Author(s):  
Yvonne Boose ◽  
André Welti ◽  
James Atkinson ◽  
Fabiola Ramelli ◽  
Anja Danielczok ◽  
...  

Abstract. Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies. Only recently some feldspar species were identified to be ice-active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands and the Sinai Peninsula). Additionally, eleven dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore we investigated how representative ice nucleation on surface-collected dust is for that in the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC set-up to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233–250 K. Dust particles were collected in parallel on filters for offline cold stage ice nucleation experiments at 253–263 K. To help the interpretation of the results from the ice nucleation experiments the mineralogical composition of the dusts was investigated. We found that a higher ice nucleation activity in a given sample can be attributed at 253 K to the K-feldspar content present in this sample whereas at temperatures between 238–245 K it is attributed to the sum of feldspar and quartz content present. A high clay content on the other hand is associated with a lower ice nucleation activity of a sample. This confirms the importance of feldspar at T > 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower T as found by earlier studies for monomineral dust surrogates. Furthermore, we find that milling may lead to a decrease in the ice nucleation ability of polymineral samples due to a change in mineralogical composition in the atmospherically relevant size fraction arising from the different hardness and cleavage of individual mineral phases. Comparison of our comprehensive data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modelling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key while other minerals are only of minor importance.


2005 ◽  
Vol 5 (10) ◽  
pp. 2617-2634 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2019 ◽  
Vol 19 (17) ◽  
pp. 11343-11361 ◽  
Author(s):  
Alexander D. Harrison ◽  
Katherine Lever ◽  
Alberto Sanchez-Marroquin ◽  
Mark A. Holden ◽  
Thomas F. Whale ◽  
...  

Abstract. Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-rich feldspar (K-feldspar) has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice-nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust, it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 ∘C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. For example, the ice-nucleation temperatures for one quartz sample shift down by ∼2 ∘C in 1 h and 12 ∘C after 16 months in water. The sensitivity to water and air is perhaps surprising, as quartz is thought of as a chemically resistant mineral, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the mineral. We find that the quartz group of minerals is generally less active than K-feldspars by roughly 7 ∘C, although the most active quartz samples are of a similar activity to some K-feldspars with an active site density, ns(T), of 1 cm−2 at −9 ∘C. We also find that the freshly milled quartz samples are generally more active by roughly 5 ∘C than the plagioclase feldspar group of minerals and the albite end member has an intermediate activity. Using both the new and literature data, active site density parameterizations have been proposed for freshly milled quartz, K-feldspar, plagioclase and albite. Combining these parameterizations with the typical atmospheric abundance of each mineral supports previous work that suggests that K-feldspar is the most important ice-nucleating mineral in airborne mineral dust.


2010 ◽  
Vol 10 (7) ◽  
pp. 16901-16940 ◽  
Author(s):  
R. C. Sullivan ◽  
M. D. Petters ◽  
P. J. DeMott ◽  
S. M. Kreidenweis ◽  
H. Wex ◽  
...  

Abstract. During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona test dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed aerosol's heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 °C and −25 °C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 °C – intended to evaporate the sulphuric acid coating – reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability in both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface sites; the possible dissolution of the coating during droplet activation did not restore all immersion/condensation-freezing ability.


Sign in / Sign up

Export Citation Format

Share Document