scholarly journals Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season

2019 ◽  
Vol 19 (12) ◽  
pp. 7973-8001 ◽  
Author(s):  
Suzane S. de Sá ◽  
Luciana V. Rizzo ◽  
Brett B. Palm ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Urbanization and deforestation have important impacts on atmospheric particulate matter (PM) over Amazonia. This study presents observations and analysis of PM1 concentration, composition, and optical properties in central Amazonia during the dry season, focusing on the anthropogenic impacts. The primary study site was located 70 km downwind of Manaus, a city of over 2 million people in Brazil, as part of the GoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol mass spectrometer (AMS) provided data on PM1 composition, and aethalometer measurements were used to derive the absorption coefficient babs,BrC of brown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrations averaged 12.2 µg m−3 at the primary study site, dominated by organics (83 %), followed by sulfate (11 %). A decrease in babs,BrC was observed as the mass concentration of nitrogen-containing organic compounds decreased and the organic PM1 O:C ratio increased, suggesting atmospheric bleaching of the BrC components. The organic PM1 was separated into six different classes by positive-matrix factorization (PMF), and the mass absorption efficiency Eabs associated with each factor was estimated through multivariate linear regression of babs,BrC on the factor loadings. The largest Eabs values were associated with urban (2.04±0.14 m2 g−1) and biomass-burning (0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % of babs,BrC while accounting for 30 % to 40 % of the organic PM1 mass concentration. In addition, a comparison of organic PM1 composition between wet and dry seasons revealed that only part of the 9-fold increase in mass concentration between the seasons can be attributed to biomass burning. Biomass-burning factor loadings increased by 30-fold, elevating its relative contribution to organic PM1 from about 10 % in the wet season to 30 % in the dry season. However, most of the PM1 mass (>60 %) in both seasons was accounted for by biogenic secondary organic sources, which in turn showed an 8-fold seasonal increase in factor loadings. A combination of decreased wet deposition and increased emissions and oxidant concentrations, as well as a positive feedback on larger mass concentrations are thought to play a role in the observed increases. Furthermore, fuzzy c-means clustering identified three clusters, namely “baseline”, “event”, and “urban” to represent different pollution influences during the dry season. The baseline cluster, representing the dry season background, was associated with a mean mass concentration of 9±3 µg m−3. This concentration increased on average by 3 µg m−3 for both the urban and the event clusters. The event cluster, representing an increased influence of biomass burning and long-range transport of African volcanic emissions, was characterized by remarkably high sulfate concentrations. The urban cluster, representing the influence of Manaus emissions on top of the baseline, was characterized by an organic PM1 composition that differed from the other two clusters. The differences discussed suggest a shift in oxidation pathways as well as an accelerated oxidation cycle due to urban emissions, in agreement with findings for the wet season.

2019 ◽  
Author(s):  
Suzane S. de Sá ◽  
Luciana V. Rizzo ◽  
Brett B. Palm ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Urbanization and deforestation have important impacts on atmospheric particulate matter (PM) over Amazonia. This study presents observations and analysis of submicron PM1 concentration, composition, and optical properties in central Amazonia during the dry season. The focus is on delineating the anthropogenic impact on the observed quantities, especially as related to the organic PM1. The primary study site was located 70 km to the west of Manaus, a city of over two million people in Brazil. As part of the GoAmazon2014/5 experiment, datasets from a large suite of instrumentation were employed. A high-resolution time-of-flight aerosol mass spectrometer (AMS) provided data on PM1 composition, and aethalometer measurements were used to derive the absorption coefficient babs,BrC of brown carbon (BrC) at 370 nm. The relationships of babs,BrC with AMS-measured quantities showed that the absorption was associated with less-oxidized, nitrogen-containing organic compounds. Atmospheric processing appeared to bleach the BrC components. The organic PM1 was separated into different classes by positive-matrix factorization (PMF). Estimates of the effective mass absorption efficiency associated with each PMF factor were obtained. Biomass burning and urban emissions appeared to contribute at least 80 % of babs,BrC while accounting for 30 to 40 % of the organic PM1 mass concentration. In addition, a comparison of organic PM1 composition between wet and dry seasons revealed that only a fraction of the nine-fold increase in mass concentration between the seasons was due to biomass burning. An eight-fold increase in biogenic secondary organic PM1 was observed. A combination of decreased wet deposition and increased emissions and oxidant concentrations, as well as a positive feedback on larger mass concentrations are thought to play a role in the observed increases. Fuzzy c-means clustering identified three clusters to represent different pollution influences during the dry season, including baseline (dry season background, which includes biomass burning), event (increased influence of biomass burning and long-range transport of African volcanic emissions), and urban (Manaus influence on top of the background). The baseline cluster was associated with a mean mass concentration of 9 ± 3 μg m−3. This concentration increased on average by 3 μg m−3 for both the urban and the event clusters. The event cluster was characterized by remarkably high sulfate concentrations. Differences in the organic PM1 composition for the urban cluster compared to the other two clusters suggested a shift in oxidation pathways as well as an accelerated oxidation cycle due to urban emissions, in agreement with findings for the wet season. 


2012 ◽  
Vol 12 (11) ◽  
pp. 4987-5015 ◽  
Author(s):  
T. Pauliquevis ◽  
L. L. Lara ◽  
M. L. Antunes ◽  
P. Artaxo

Abstract. In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1°55' S, 59°29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 μm) and coarse mode (2.5 μm < d < 10.0 μm) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 μg m-3). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April–June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


2015 ◽  
Vol 15 (3) ◽  
pp. 1299-1312 ◽  
Author(s):  
Y.-L. Zhang ◽  
R.-J. Huang ◽  
I. El Haddad ◽  
K.-F. Ho ◽  
J.-J. Cao ◽  
...  

Abstract. During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.


2018 ◽  
Vol 18 (14) ◽  
pp. 10773-10797 ◽  
Author(s):  
John E. Shilling ◽  
Mikhail S. Pekour ◽  
Edward C. Fortner ◽  
Paulo Artaxo ◽  
Suzane de Sá ◽  
...  

Abstract. The Green Ocean Amazon (GoAmazon 2014/5) campaign, conducted from January 2014 to December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol life cycle and aerosol–cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) research aircraft was deployed from 17 February to 25 March 2014 (wet season) and 6 September to 5 October 2014 (dry season) to investigate aerosol and cloud properties aloft. Here, we present results from the G-1 deployments focusing on measurements of the aerosol chemical composition and secondary organic aerosol (SOA) formation and aging. In the first portion of the paper, we provide an overview of the data and compare and contrast the data from the wet and dry season. Organic aerosol (OA) dominates the deployment-averaged chemical composition, comprising 80 % of the non-refractory PM1 aerosol mass, with sulfate comprising 14 %, nitrate 2 %, and ammonium 4 %. This product distribution was unchanged between seasons, despite the fact that total aerosol loading was significantly higher in the dry season and that regional and local biomass burning was a significant source of OA mass in the dry, but not wet, season. However, the OA was more oxidized in the dry season, with the median of the mean carbon oxidation state increasing from −0.45 in the wet season to −0.02 in the dry season. In the second portion of the paper, we discuss the evolution of the Manaus plume, focusing on 13 March 2014, one of the exemplary days in the wet season. On this flight, we observe a clear increase in OA concentrations in the Manaus plume relative to the background. As the plume is transported downwind and ages, we observe dynamic changes in the OA. The mean carbon oxidation state of the OA increases from −0.6 to −0.45 during the 4–5 h of photochemical aging. Hydrocarbon-like organic aerosol (HOA) mass is lost, with ΔHOA∕ΔCO values decreasing from 17.6 µg m−3 ppmv−1 over Manaus to 10.6 µg m−3 ppmv−1 95 km downwind. Loss of HOA is balanced out by formation of oxygenated organic aerosol (OOA), with ΔOOA∕ΔCO increasing from 9.2 to 23.1 µg m−3 ppmv−1. Because hydrocarbon-like organic aerosol (HOA) loss is balanced by OOA formation, we observe little change in the net Δorg∕ΔCO values; Δorg∕ΔCO averages 31 µg m−3 ppmv−1 and does not increase with aging. Analysis of the Manaus plume evolution using data from two additional flights in the wet season showed similar trends in Δorg∕ΔCO to the 13 March flight; Δorg∕ΔCO values averaged 34 µg m−3 ppmv−1 and showed little change over 4–6.5 h of aging. Our observation of constant Δorg∕ΔCO are in contrast to literature studies of the outflow of several North American cities, which report significant increases in Δorg∕ΔCO for the first day of plume aging. These observations suggest that SOA formation in the Manaus plume occurs, at least in part, by a different mechanism than observed in urban outflow plumes in most other literature studies. Constant Δorg∕ΔCO with plume aging has been observed in many biomass burning plumes, but we are unaware of reports of fresh urban emissions aging in this manner. These observations show that urban pollution emitted from Manaus in the wet season forms less particulate downwind as it ages than urban pollution emitted from North American cities.


2019 ◽  
Author(s):  
Chauvigné Aurélien ◽  
Diego Aliaga ◽  
Marcos Andrade ◽  
Patrick Ginot ◽  
Radovan Krejci ◽  
...  

Abstract. We present the variability of aerosol particle optical properties measured at the global Atmosphere Watch (GAW) station Chacaltaya (5240 m a.s.l.). The in-situ mountain site is ideally located to study regional impacts of the densely populated urban area of La Paz/El Alto, and the intensive activity in the Amazonian basin. Four year measurements allow to study aerosol particle properties for distinct atmospheric conditions as stable and turbulent layers, different airmass origins, as well as for wet and dry seasons, including biomass-burning influenced periods. The absorption, scattering and extinction coefficients (median annual values of 0.74, 12.14 and 12.96 Mm−1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94 and 8.68 Mm−1 respectively) and higher values during the dry season (0.80, 11.23 and 14.51 Mm−1 respectively). These parameters also show a pronounced diurnal variation (maximum during daytime, minimum during night-time, as a result of the dynamic and convective effects of leading to lower atmospheric layers reaching the site during daytime. Retrieved intensive optical properties are significantly different from one season to the other, showing the influence of different sources of aerosols according to the season. Both intensive and extensive optical properties of aerosols were found to be different among the different atmospheric layers. The particle light absorption, scattering and extinction coefficients are in average 1.94, 1.49 and 1.55 times higher, respectively, in the turbulent layer compared to the stable layer. We observe that the difference is highest during the wet season and lowest during the dry season. Using wavelength dependence of aerosol particle optical properties, we discriminated contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass-burning and urban transport or industries) emissions according to seasons and tropospheric layers. The main sources influencing measurements at CHC are arising from the urban area of La Paz/El Alto, and regional biomass-burning from the Amazonian basin. Results show a 28 % to 80 % increase of the extinction coefficients during the biomass-burning season with respect to the dry season, which is observed in both tropospheric layers. From this analyse, long-term observations at CHC provides the first direct evidence of the impact of emissions in the Amazonian basin on atmospheric optical properties far away from their sources, all the way to the stable layer.


2005 ◽  
Vol 5 (2) ◽  
pp. 311-335 ◽  
Author(s):  
B. Sauvage ◽  
V. Thouret ◽  
J.-P. Cammas ◽  
F. Gheusi ◽  
G. Athier ◽  
...  

Abstract. We analyze ozone observations recorded over Equatorial Africa between April 1997 and March 2003 by the MOZAIC programme, providing the first ozone climatology deriving from continental in-situ data over this region. Three-dimensional streamlines strongly suggests connections between the characteristics of the ozone monthly mean vertical profiles, the most persistent circulation patterns in the troposphere over Equatorial Africa (on a monthly basis) such as the Harmattan, the African Easterly Jet, the Trades and the regions of ozone precursors emissions by biomass burning. During the biomass burning season in each hemisphere, the lower troposphere exhibits layers of enhanced ozone (i.e. 70 ppbv over the coast of Gulf of Guinea in December-February and 85 ppbv over Congo in June-August). The characteristics of the ozone monthly mean vertical profiles are clearly connected to the regional flow regime determined by seasonal dynamic forcing. The mean ozone profile over the coast of Gulf of Guinea in the burning season is characterized by systematically high ozone below 650hPa ; these are due to the transport by the Harmattan and the AEJ of the pollutants originating from upwind fires. The confinement of high ozone to the lower troposphere is due to the high stability of the Harmattan and the blocking Saharan anticyclone which prevents efficient vertical mixing. In contrast, ozone enhancements observed over Central Africa during the local dry season (June-August) are not only found in the lower troposphere but throughout the troposphere. Moreover, this study highlights a connection between the regions of the coast of Gulf of Guinea and regions of Congo to the south that appears on a semi annual basis. Vertical profiles in wet-season regions exhibit ozone enhancements in the lower troposphere due to biomass burning products transport from fires situated in the opposite dry-season hemisphere.


2016 ◽  
Author(s):  
Suzane S. de Sá ◽  
Brett B. Palm ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
Matthew K. Newburn ◽  
...  

Abstract. The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Mass spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NOy concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NOy subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NOy concentration from 0.5 to 2 ppb. The suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NOy than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.


Sign in / Sign up

Export Citation Format

Share Document