scholarly journals The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund

2020 ◽  
Vol 20 (8) ◽  
pp. 5157-5173 ◽  
Author(s):  
Tatiana Nomokonova ◽  
Kerstin Ebell ◽  
Ulrich Löhnert ◽  
Marion Maturilli ◽  
Christoph Ritter

Abstract. The occurrence of events with increased and decreased integrated water vapor (IWV) at the Arctic site Ny-Ålesund, their relation to cloud properties, and the surface cloud radiative effect (CRE) is investigated. For this study, we used almost 2.5 years (from June 2016 to October 2018) of ground-based cloud observations processed with the Cloudnet algorithm, IWV from a microwave radiometer (MWR), long-term radiosonde observations, and backward trajectories FLEXTRA. Moist and dry anomalies were found to be associated with North Atlantic flows and air transport within the Arctic region, respectively. The amount of water vapor is often correlated to cloud occurrence, presence of cloud liquid water, and liquid water path (LWP) and ice water path (IWP). In turn, changes in the cloud properties cause differences in surface CRE. During dry anomalies, in autumn, winter, and spring, the mean net surface CRE was lower by 2–37 W m−2 with respect to normal conditions, while in summer the cloud-related surface cooling was reduced by 49 W m−2. In contrast, under moist conditions in summer the mean net surface CRE becomes more negative by 25 W m−2, while in other seasons the mean net surface CRE was increased by 5–37 W m−2. Trends in the occurrence of dry and moist anomalies were analyzed based on a 25-year radiosonde database. Dry anomalies have become less frequent, with rates for different seasons ranging from −12.8 % per decade to −4 % per decade, while the occurrence of moist events has increased at rates from 2.8 % per decade to 6.4 % per decade.

2019 ◽  
Author(s):  
Tatiana Nomokonova ◽  
Kerstin Ebell ◽  
Ulrich Löhnert ◽  
Marion Maturilli ◽  
Christoph Ritter

Abstract. This study analyses occurrence of events with increased and decreased integrated water vapor (IWV) and atmospheric temperature (T) at the Arctic site Ny-Ålesund and their relation to cloud properties and the surface cloud radiative effect (CRE). For this study, we used almost 2.5 years (from June 2016 to October 2018) of ground-based cloud observations processed with the Cloudnet algorithm, IWV and T from microwave radiometer (MWR), long-term radiosonde observations, and backward trajectories FLEXTRA. Moist and dry anomalies were found to be associated with North Atlantic flows and air circulations in the Arctic region, respectively. The amount of water vapor is often correlated with cloud occurrence, presence of cloud liquid water, liquid and ice water path (LWP and IWP). In turn, changes in the cloud properties cause differences in surface CRE. During dry anomalies, in autumn, winter, and spring, the mean net surface CRE was lower by 2–37 W m−2 with respect to normal conditions, while in summer the cloud related surface cooling was reduced by 49 W m−2. In contrast, under moist conditions in summer the mean net surface CRE becomes more negative by 25 W m−2, while in other seasons the mean net surface CRE was increased by 5–37 W m−2. Trends in occurrence of dry and moist anomalies were analyzed based on 25-year-radiosonde database. Dry anomalies become less frequent with rates for different seasons from −12.8 to −4 % per decade, while the occurrence of moist event increases at rates from 2.8 to 6.4 % per decade. Taking into account the relations between the anomaly types and cloud properties the trends might be related to an increase in cloud occurrence, LWP, and IWP. The change in cloud properties could, in turn, modulate the surface CRE and lead to stronger surface cooling and warming related to clouds in summer and other seasons, respectively.


2021 ◽  
Author(s):  
Philipp Richter ◽  
Mathias Palm ◽  
Christine Weinzierl ◽  
Hannes Griesche ◽  
Penny M. Rowe ◽  
...  

Abstract. A dataset of microphysical cloud parameters from optically thin clouds, retrieved from infrared spectral radiances measured in summer 2017 in the Arctic, is presented. Measurements were conducted using a mobile Fourier-transform infrared (FTIR) spectrometer which was carried by the RV Polarstern. This dataset contains retrieved optical depths and effective radii of ice and water, from which the liquid water path and ice water path are calculated. These water paths and the effective radii are compared with derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy retrieval, called Cloudnet. Comparing the liquid water paths from the infrared retrieval and Cloudnet shows significant correlations with a standard deviation of 8.60 g · m−2. Although liquid water path retrievals from microwave radiometer data come with a uncertainty of at least 20 g · m−2, a significant correlation and a standard deviation of 5.32 g · m−2 between the results of clouds with a liquid water path of at most 20 g · m−2 retrieved from infrared spectra and results from Cloudnet can be seen. Therefore, despite its large uncertainty, the comparison with data retrieved from infrared spectra shows that optically thin clouds of the measurement campaign in summer 2017 can be observed well using microwave radiometers within the Cloudnet framework. Apart from this, the dataset of microphysical cloud properties presented here allows to perform calculations of the cloud radiative effects, when the Cloudnet data from the campaign are not available, which was from the 22nd July 2017 until the 19th August 2017. The dataset is published at Pangaea (Richter et al., 2021).


2012 ◽  
Vol 5 (6) ◽  
pp. 8653-8699 ◽  
Author(s):  
T. J. Garrett ◽  
C. Zhao

Abstract. This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska – Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.


2018 ◽  
Vol 11 (10) ◽  
pp. 5439-5460 ◽  
Author(s):  
Vladimir S. Kostsov ◽  
Anke Kniffka ◽  
Dmitry V. Ionov

Abstract. Tropospheric clouds are a very important component of the climate system and the hydrological cycle in the Arctic and sub-Arctic. Liquid water path (LWP) is one of the key parameters of clouds urgently needed for a variety of studies, including the snow cover and climate modelling at northern latitudes. A joint analysis was made of the LWP values obtained from observations by the SEVIRI satellite instrument and from ground-based observations by the RPG-HATPRO microwave radiometer near St Petersburg, Russia (60∘ N, 30∘ E). The time period of selected data sets spans 2 years (December 2012–November 2014) excluding winter months, since the specific requirements for SEVIRI observations restrict measurements at northern latitudes in winter when the solar zenith angle is too large. The radiometer measurement site is located very close to the shore of the Gulf of Finland, and our study has revealed considerable differences between the LWP values obtained by SEVIRI over land and over water areas in the region under investigation. Therefore, special attention was paid to the analysis of the LWP spatial distributions derived from SEVIRI observations at scales from 15 to 150 km in the vicinity of St Petersburg. Good agreement between the daily median LWP values obtained from the SEVIRI and the RPG-HATPRO observations was shown: the rms difference was estimated at 0.016 kg m−2 for a warm season and 0.048 kg m−2 for a cold season. Over 7 months (February–May and August–October), the SEVIRI and the RPG-HATPRO instruments revealed similar diurnal variations in LWP, while considerable discrepancies between the diurnal variations obtained by the two instruments were detected in June and July. On the basis of reanalysis data, it was shown that the LWP diurnal cycles are characterised by considerable interannual variability.


2012 ◽  
Vol 33 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Ha-Young Yang ◽  
Ki-Ho Chang ◽  
Joo-Wan Cha ◽  
Young-Jean Choi ◽  
Chan-Soo Ryu

Sign in / Sign up

Export Citation Format

Share Document