scholarly journals In-situ and Denuder Based Measurements of Elemental and Reactive Gaseous Mercury with Analysis by Laser-Induced Fluorescence. Results from the Reno Atmospheric Mercury Intercomparison Experiment

2016 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two photon laser-induced fluorescence (2P-LIF) instrument for the in-situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 hours but on one occasion extending to ~ 24 hours, were conducted allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with Cold Vapor Atomic Fluorescence Spectroscopic (CVAFS) analysis. At the highest temporal resolution, ~ 5 minute samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total gaseous mercury (TGM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl coated annular denuders were deployed and analyzed using thermal dissociation coupled with single photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TGM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury.

2017 ◽  
Vol 17 (1) ◽  
pp. 465-483 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two-photon laser-induced fluorescence (2P-LIF) instrument for the in situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 h but on one occasion extending to ∼ 24 h, were conducted, allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with cold vapor atomic fluorescence spectroscopic (CVAFS) analysis. At the highest temporal resolution, ∼ 5 min samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total mercury (TM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl-coated annular denuders were deployed and analyzed using thermal dissociation coupled with single-photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. The limitations of the RAMIX experiment and potential improvements that should be implemented in any future mercury instrument intercomparison are discussed. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury from the RAMIX results.


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2009 ◽  
Vol 9 (4) ◽  
pp. 15641-15671 ◽  
Author(s):  
X. Faïn ◽  
D. Obrist ◽  
A. G. Hallar ◽  
I. McCubbin ◽  
T. Rahn

Abstract. The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with CO, ozone, aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m−3 (GEM), 20 pg m−3 (RGM) and 9 pg m−3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 135 pg m−3. RGM enhancement events were unrelated to daytime/nighttime patterns and lasted for long time periods of 2 to 6 days. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~ −0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM, but the mechanism remain unclear. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, we propose that in situ production of RGM may have occurred in some distance allowing for scavenging and/or deposition of some RGM prior to reaching the laboratory, and that GEM oxidation is an important tropospheric Hg sink. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent mercury and that high RGM levels are not limited to the upper troposphere.


2012 ◽  
Vol 12 (11) ◽  
pp. 29203-29233 ◽  
Author(s):  
H. Timonen ◽  
J. L. Ambrose ◽  
D. A. Jaffe

Abstract. Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM < 0.05) in the Asian source region. Secondly, we observed very high RGM levels – the highest reported in the FT – in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m−3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide the first observational evidence indicating significant GEM oxidation in the lower FT. The identification of these processes changes our conceptual understanding of the formation and distribution of oxidized Hg in the global atmosphere.


2010 ◽  
Vol 10 (3) ◽  
pp. 1121-1131 ◽  
Author(s):  
E.-G. Brunke ◽  
C. Labuschagne ◽  
R. Ebinghaus ◽  
H. H. Kock ◽  
F. Slemr

Abstract. Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs) and depletion events (DEs). Both types of events originate mostly within a short transport distance (up to about 100 km), which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs) observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.


2013 ◽  
Vol 10 (2) ◽  
pp. 102 ◽  
Author(s):  
Andreas Weigelt ◽  
Christian Temme ◽  
Elke Bieber ◽  
Andreas Schwerin ◽  
Maik Schuetze ◽  
...  

Environmental context Mercury is a very hazardous substance for human and environmental health. Systematic long-term direct measurements in the atmosphere can provide valuable information about the effect of emission controls on the global budget of atmospheric mercury, and offer insight into source–receptor transboundary transport of mercury. A complete setup for the measurement of the four most relevant atmospheric mercury species (total gaseous mercury, gaseous oxidised mercury, particle-bound mercury, and gaseous elemental mercury) has been operating at the rural background site of Waldhof, Germany, since 2009. We present the dataset for 2009–2011, the first full-speciation time series for atmospheric mercury reported in Central Europe. Abstract Measurements of mercury species started in 2009 at the air pollution monitoring site ‘Waldhof’ of the German Federal Environmental Agency. Waldhof (52°48′N, 10°45′E) is a rural background site located in the northern German lowlands in a flat terrain, 100km south-east of Hamburg. The temporally highly resolved measurements of total gaseous mercury (TGM), gaseous oxidised mercury (GOM), particle-bound mercury (PBMPM2.5, with particulate matter of a diameter of ≤2.5µm) and gaseous elemental mercury (GEM) cover the period from 2009 to 2011. The complete measurement procedure turned out to be well applicable to detect GOM and PBMPM2.5 levels in the range of 0.4 to 65pgm–3. As the linearity of the analyser was proven to be constant over orders of magnitude, even larger concentrations can be measured accurately. The 3-year median concentration of GEM is found to be 1.61ngm–3, representing typical northern hemispheric background concentrations. With 6.3pgm–3, the 3-year average concentration of PBMPM2.5 is found to be approximately six times higher than the 3-year average GOM concentration. During winter the PBMPM2.5 concentration is on average twice as high as the PBMPM2.5 summer concentration, whereas the GOM concentration shows no clear seasonality. However, on a comparatively low level, a significant diurnal cycle is shown for GOM concentrations. This cycle is most likely related to photochemical oxidation mechanisms. Comparison with selected North American long-term mercury speciation datasets shows that the Waldhof 3-year median speciated mercury data represent typical rural background values.


2021 ◽  
Vol 14 (5) ◽  
pp. 3657-3672
Author(s):  
Attilio Naccarato ◽  
Antonella Tassone ◽  
Maria Martino ◽  
Sacha Moretti ◽  
Antonella Macagnano ◽  
...  

Abstract. Passive air samplers (PASs), which provide time-averaged concentrations of gaseous mercury over the timescale of weeks to months, are promising for filling a gap in the monitoring of atmospheric mercury worldwide. Their usefulness will depend on their ease of use and robustness under field conditions, their availability and affordability, and most notably, their ability to provide results of acceptable precision and accuracy. Here we describe a comparative evaluation of three PASs with respect to their ability to precisely and accurately record atmospheric background mercury concentrations at sites in both southern Italy and southern Ontario, Canada. The study includes the CNR-PAS with gold nanoparticles as a sorbent, developed by the Italian National Research Council, the IVL-PAS using an activated carbon-coated disk, developed by the Swedish Environmental Research Institute, and the MerPAS® using a sulfur-impregnated activated carbon sorbent, developed at the University of Toronto and commercialized by Tekran. Detection limits are deduced from the variability in the amount of mercury quantified in more than 20 field blank samples for each PAS. Analytical and sampling precision is quantified through 22 triplicate deployments for each PAS, ranging in duration from 2 to 12 weeks. Accuracy and bias are assessed through comparison with gaseous elemental mercury concentrations recorded by Tekran 2537 automated mercury analyzers operating alongside the PASs at both locations. The performance of the PASs was significantly better in Italy, with all of them providing concentrations that are not significantly different from the average concentrations of the Tekran 2537 instruments. In Canada, where weather conditions were much harsher and more variable during the February through April deployment period, there are differences amongst the PASs. At both sites, the MerPAS® is currently the most sensitive, precise, and accurate among the three PASs. A key reason for this is the larger size and the radial configuration of the MerPAS®, which results in lower blank levels relative to the sequestered amounts of mercury when compared to the other two PASs, which rely on axial diffusion geometries. Since blank correction becomes relatively smaller with longer deployments, performance tends to be closer amongst the PASs during deployments of 8 and 12 weeks.


2020 ◽  
Author(s):  
Attilio Naccarato ◽  
Antonella Tassone ◽  
Maria Martino ◽  
Sacha Moretti ◽  
Antonella Macagnano ◽  
...  

Abstract. Passive air samplers (PASs), providing time-averaged concentration of gaseous mercury over the time scale of weeks to months, are promising to fill a gap in the monitoring of atmospheric mercury worldwide. Their usefulness will depend on their ease-of-use and robustness under field conditions, their availability and affordability, and most notably, their ability to provide results of acceptable precision and accuracy. Here we describe a comparative evaluation of three PASs with respect to their ability to record precisely and accurately atmospheric background concentrations at sites in both southern Italy and southern Ontario. The study includes the CNR-PAS with gold nanoparticles as a sorbent, developed by the Italian National Research Council, the IVL-PAS using an activated carbon-coated disk, developed by the Swedish Environmental Research Institute, and the MerPAS® using a sulfur-impregnated activated carbon sorbent, developed at the University of Toronto and commercialized by Tekran. Detection limits are deduced from the variability in the amount of mercury quantified in more than 20 field blank samples for each PAS. Analytical and sampling precision is quantified through 22 triplicated deployments for each PAS ranging in length from two to twelve weeks. Accuracy and bias are assessed through comparison with gaseous elemental mercury concentrations recorded by Tekran 2537 automated mercury analyzers operating alongside the PASs at both locations. The performance of the PASs was significantly better in Italy, with all of them providing concentrations that are not statistically significantly different from the average of the active sampling results. In Canada, where weather conditions were much harsher and more variable during the February through April deployment period, differences were observed amongst PASs. At both sites, the MerPAS® is currently the most sensitive, precise and accurate among the three PASs. A key reason for this is the larger size and the radial configuration of the MerPAS®, which results in blank levels that are lower relative to the sequestered amounts of mercury than in the other two PASs, which rely on axial diffusion geometries. Because the blank-correction becomes relatively smaller with longer deployment, sampler performance tends to be better during deployments of 8 and 12 weeks.


2010 ◽  
Vol 10 (11) ◽  
pp. 27255-27281
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
L. R. Hole ◽  
...  

Abstract. It is agreed that gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Event (AMDE). RGM is associated with aerosols (PHg) provided that there are sufficient aerosols available for the conversion from RGM to PHg to occur. This study reports the longest time series of GEM, RGM and PHg concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78°54' N, 11°53' E). The average concentrations of the complete dataset were 1.62±0.3 ng m−3, 8±13 pgm−3 and 8±25 pgm−3 for GEM, RGM and PHg, respectively. The study revealed a clear seasonal distribution of GEM, RGM and PHg previously undiscovered. For the complete dataset the atmospheric mercury distribution was 99% GEM, whereas RGM and PHg constituted <1%. Increased PHg concentration occurred exclusively from March through April, and constituted on average 75% of the reactive mercury species in the respective period. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Surprisingly, RGM was not solely formed during the spring AMDE season. Environment Canada's Global/Regional Atmospheric Heavy Metal model (GRAHM) suggested that in situ oxidation of GEM by ozone may be producing the increased RGM concentrations from March through August. Most likely, in situ oxidation of GEM by BrO produced the observed RGM from March through August. The AMDEs occurred from late March until mid June and were thought to be of non-local origin, with GEM being transported to the study site by a wide variety of air masses. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations.


Sign in / Sign up

Export Citation Format

Share Document