scholarly journals Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008

2010 ◽  
Vol 10 (3) ◽  
pp. 1121-1131 ◽  
Author(s):  
E.-G. Brunke ◽  
C. Labuschagne ◽  
R. Ebinghaus ◽  
H. H. Kock ◽  
F. Slemr

Abstract. Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs) and depletion events (DEs). Both types of events originate mostly within a short transport distance (up to about 100 km), which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs) observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.

2009 ◽  
Vol 9 (5) ◽  
pp. 20979-21009 ◽  
Author(s):  
E.-G. Brunke ◽  
C. Labuschagne ◽  
R. Ebinghaus ◽  
H. H. Kock ◽  
F. Slemr

Abstract. Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs) and depletion events (DEs). Both types of events originate mostly within a short transport distance (up to about 100 km), which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is almost quantitative in many cases and suggests a lifetime of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The characteristics of the DE occurrence at Cape Point is neither similar to the halogen driven atmospheric mercury depletion events (AMDEs) observed in Polar Regions nor to the DEs reported for plumes of urban air. Additional measurements are necessary to reveal the chemical mechanism of the observed DEs and to assess its importance on larger scales.


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2016 ◽  
Author(s):  
Z. Ye ◽  
H. Mao ◽  
C.-J. Lin ◽  
S. Y. Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (marine), Thompson Farm (coastal, rural), and Pack Monadnock (inland, rural, elevated). The chemical mechanism improved model's ability to simulate the formation of gaseous oxidized mercury (GOM) at the study sites. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2 initiated GEM oxidation was significant (~ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL), Br and BrO were dominant GEM oxidants contributing ~ 70 % of the total GOM production during mid-day, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day. Following the production of HgBr from GEM + Br, HgBr was oxidized by BrO, HO2, OH, ClO, and IO to form Hg(II) brominated GOM species. However, under atmospheric conditions, the prevalent GEM oxidants in the MBL could be Br / BrO or O3 / OH depending on Br and BrO mixing ratios. Relative humidity and products of the CH3O2 + BrO reaction possibly affected significantly the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could be potentially important in the production of GOM as well as Br and BrO at the marine site.


2010 ◽  
Vol 44 (19) ◽  
pp. 7425-7430 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Daniel J. Jacob ◽  
Britt T. Soerensen ◽  
Matthew S. Johnson

2016 ◽  
Vol 16 (13) ◽  
pp. 8461-8478 ◽  
Author(s):  
Zhuyun Ye ◽  
Huiting Mao ◽  
Che-Jen Lin ◽  
Su Youn Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (∼ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ∼ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas–particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.


2007 ◽  
Vol 7 (4) ◽  
pp. 10837-10931 ◽  
Author(s):  
A. Steffen ◽  
T. Douglas ◽  
M. Amyot ◽  
P. Ariya ◽  
K. Aspmo ◽  
...  

Abstract. It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes have occurred but are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes. Mercury, Atmospheric mercury depletion events (AMDE), Polar, Arctic, Antarctic, Ice


2008 ◽  
Vol 8 (6) ◽  
pp. 1445-1482 ◽  
Author(s):  
A. Steffen ◽  
T. Douglas ◽  
M. Amyot ◽  
P. Ariya ◽  
K. Aspmo ◽  
...  

Abstract. It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes.


2010 ◽  
Vol 10 (7) ◽  
pp. 3309-3319 ◽  
Author(s):  
A. Dommergue ◽  
F. Sprovieri ◽  
N. Pirrone ◽  
R. Ebinghaus ◽  
S. Brooks ◽  
...  

Abstract. Polar ecosystems are considered to be the last pristine environments of the earth relatively uninfluenced by human activities. Antarctica in particular, compared to the Arctic is considered to be even less affected by any kind of anthropogenic influences. Once contaminants reach the Polar Regions, their lifetime in the troposphere depends on local removal processes. Atmospheric mercury, in particular, has unique characteristics that include long-range transport to Polar Regions and the transformation to more toxic and water-soluble compounds that may potentially become bioavailable. These chemical-physical properties have placed mercury on the priority list of an increasing number of International, European and National conventions, and agreements, aimed at the protection of the ecosystems including human health (i.e. GEO, UNEP, AMAP, UN-ECE, HELCOM, OSPAR). This interest, in turn, stimulates a significant amount of research including measurements of gaseous elemental mercury reaction rate constant with atmospheric oxidants, experimental and modelling studies in order to understand the cycling of mercury in Polar Regions, and its impact to these ecosystems. Special attention in terms of contamination of Polar Regions is paid to the consequences of the springtime phenomena, referred to as "Atmospheric Mercury Depletion Events" (AMDEs), during which elemental mercury through a series of photochemically-initiated reactions involving halogens, may be converted to a reactive form that may accumulate in polar coastal, or sea ice, ecosystems. The discovery of the AMDEs, first noted in the Arctic, has also been observed at both poles and was initially considered to result in an important net input of atmospheric mercury into the polar surfaces. However, recent studies point out that complex processes take place after deposition that may result in less significant net-inputs from the atmosphere since a fraction, sometimes significant, of deposited mercury may be recycled. Therefore, the contribution of this unique reactivity occurring in polar atmospheres to the global budget of atmospheric mercury, and the role played by snow and ice surfaces of these regions, are important issues. This paper presents a review of atmospheric mercury studies conducted in the Antarctic troposphere, both at coastal locations and on the Antarctic Plateau since 1985. Our current understanding of atmospheric reactivity in this region is also presented.


2012 ◽  
Vol 12 (11) ◽  
pp. 29203-29233 ◽  
Author(s):  
H. Timonen ◽  
J. L. Ambrose ◽  
D. A. Jaffe

Abstract. Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM < 0.05) in the Asian source region. Secondly, we observed very high RGM levels – the highest reported in the FT – in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m−3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide the first observational evidence indicating significant GEM oxidation in the lower FT. The identification of these processes changes our conceptual understanding of the formation and distribution of oxidized Hg in the global atmosphere.


Sign in / Sign up

Export Citation Format

Share Document