scholarly journals In situ and denuder-based measurements of elemental and reactive gaseous mercury with analysis by laser-induced fluorescence – results from the Reno Atmospheric Mercury Intercomparison Experiment

2017 ◽  
Vol 17 (1) ◽  
pp. 465-483 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two-photon laser-induced fluorescence (2P-LIF) instrument for the in situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 h but on one occasion extending to ∼ 24 h, were conducted, allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with cold vapor atomic fluorescence spectroscopic (CVAFS) analysis. At the highest temporal resolution, ∼ 5 min samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total mercury (TM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl-coated annular denuders were deployed and analyzed using thermal dissociation coupled with single-photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. The limitations of the RAMIX experiment and potential improvements that should be implemented in any future mercury instrument intercomparison are discussed. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury from the RAMIX results.

2016 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two photon laser-induced fluorescence (2P-LIF) instrument for the in-situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 hours but on one occasion extending to ~ 24 hours, were conducted allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with Cold Vapor Atomic Fluorescence Spectroscopic (CVAFS) analysis. At the highest temporal resolution, ~ 5 minute samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total gaseous mercury (TGM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl coated annular denuders were deployed and analyzed using thermal dissociation coupled with single photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TGM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury.


2010 ◽  
Vol 10 (11) ◽  
pp. 27255-27281
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
L. R. Hole ◽  
...  

Abstract. It is agreed that gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Event (AMDE). RGM is associated with aerosols (PHg) provided that there are sufficient aerosols available for the conversion from RGM to PHg to occur. This study reports the longest time series of GEM, RGM and PHg concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78°54' N, 11°53' E). The average concentrations of the complete dataset were 1.62±0.3 ng m−3, 8±13 pgm−3 and 8±25 pgm−3 for GEM, RGM and PHg, respectively. The study revealed a clear seasonal distribution of GEM, RGM and PHg previously undiscovered. For the complete dataset the atmospheric mercury distribution was 99% GEM, whereas RGM and PHg constituted <1%. Increased PHg concentration occurred exclusively from March through April, and constituted on average 75% of the reactive mercury species in the respective period. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Surprisingly, RGM was not solely formed during the spring AMDE season. Environment Canada's Global/Regional Atmospheric Heavy Metal model (GRAHM) suggested that in situ oxidation of GEM by ozone may be producing the increased RGM concentrations from March through August. Most likely, in situ oxidation of GEM by BrO produced the observed RGM from March through August. The AMDEs occurred from late March until mid June and were thought to be of non-local origin, with GEM being transported to the study site by a wide variety of air masses. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Rute Cesário ◽  
Nelson J. O’Driscoll ◽  
Sara Justino ◽  
Claire E. Wilson ◽  
Carlos E. Monteiro ◽  
...  

In situ air concentrations of gaseous elemental mercury (Hg(0)) and vegetation–atmosphere fluxes were quantified in both high (Cala Norte, CN) and low-to-moderate (Alcochete, ALC) Hg-contaminated saltmarsh areas of the Tagus estuary colonized by plant species Halimione portulacoides (Hp) and Sarcocornia fruticosa (Sf). Atmospheric Hg(0) ranged between 1.08–18.15 ng m−3 in CN and 1.18–3.53 ng m−3 in ALC. In CN, most of the high Hg(0) levels occurred during nighttime, while the opposite was observed at ALC, suggesting that photoreduction was not driving the air Hg(0) concentrations at the contaminated site. Vegetation–air Hg(0) fluxes were low in ALC and ranged from −0.76 to 1.52 ng m−2 (leaf area) h−1 for Hp and from −0.40 to 1.28 ng m−2 (leaf area) h−1 for Sf. In CN, higher Hg fluxes were observed for both plants, ranging from −9.90 to 15.45 ng m−2 (leaf area) h−1 for Hp and from −8.93 to 12.58 ng m−2 (leaf area) h−1 for Sf. Mercury flux results at CN were considered less reliable due to large and fast variations in the ambient air concentrations of Hg(0), which may have been influenced by emissions from the nearby chlor-alkali plant, or historical contamination. Improved experimental setup, the influence of high local Hg concentrations and the seasonal activity of the plants must be considered when assessing vegetation–air Hg(0) fluxes in Hg-contaminated areas.


2008 ◽  
Vol 8 (23) ◽  
pp. 7165-7180 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous depletion of GEM and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10−13 and kHg+BrO≤1×10−15 cm3 molecule−1 s−1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous-phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)22−. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl42−) was much higher than in dilute aqueous droplets (mostly Hg(SO3)22−), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2016 ◽  
Author(s):  
Qianqian Hong ◽  
Zhouqing Xie ◽  
Cheng Liu ◽  
Feiyue Wang ◽  
Pinhua Xie ◽  
...  

Abstract. Long-term continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in east central China, from July 2013 to June 2014. The mean concentrations (± standard deviation) of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) were 3.95 ± 1.93 ng m−3, 2.49 ± 2.41 pg m−3 and 23.3 ± 90.8 pg m−3, respectively, during non-haze days, and 4.74 ± 1.62 ng m−3, 4.32 ± 8.36 pg m−3 and 60.2 ± 131.4 pg m−3, respectively, during haze days. Potential source contribution function (PSCF) analysis suggested that the atmospheric mercury pollution during haze days was caused primarily by local mercury emissions, instead of via long-range mercury transport. In addition, the disadvantageous diffussion during haze days will also enhance the level of atmospheric mercury. Compared to the GEM and RGM, change in PBM was more sensitive to the haze pollution. The mean PBM concentration during haze days was 2.5 times that during non-haze days due to elevated concentrations of particulate matter. A remarkable seasonal trend in PBM was observed with concentration decreasing in the following order in response to the frequency of haze days: autumn, winter, spring, summer. A distinct diurnal relationship was found between GEM and RGM during haze days, with the peak values of RGM coinciding with the decline in GEM. Using HgOH as an intermediate product during GEM oxidation, our results suggest that NO2 aggregation with HgOH could explain the enhanced production of RGM during the daytime in haze days. Increasing level of NOx will potentially accelerate the oxidation of GEM despite the decrease of solar radiation.


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2007 ◽  
Vol 7 (4) ◽  
pp. 10837-10931 ◽  
Author(s):  
A. Steffen ◽  
T. Douglas ◽  
M. Amyot ◽  
P. Ariya ◽  
K. Aspmo ◽  
...  

Abstract. It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes have occurred but are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes. Mercury, Atmospheric mercury depletion events (AMDE), Polar, Arctic, Antarctic, Ice


2017 ◽  
Author(s):  
Maor Gabay ◽  
Mordechai Peleg ◽  
Erick Fredj ◽  
Eran Tas

Abstract. Accurate characterization of gaseous elemental mercury (GEM) chemical oxidation pathways and their kinetics is critically important for assessing the transfer of atmospheric mercury to bioaquatic systems. Recent comprehensive field measurements have suggested that the nitrate radical (NO3) plays a role in efficient nighttime oxidation of GEM, and that the role of the hydroxyl radical (OH) as a GEM oxidant has been underestimated. We used the CAABA/MECCA chemical box model and additional kinetic calculations to analyze these measurement results, in order to investigate the nighttime and daytime oxidation of GEM. We assumed a second-order reaction for the NO3 induced nighttime oxidation of GEM. Our analysis demonstrated that nighttime oxidation of GEM has to be included in the model to account for the measured variations in nighttime reactive gaseous mercury (RGM) concentration. A lower limit and best-fit rate constant for GEM nighttime oxidation are provided. To the best of our knowledge, this is the first time that a rate for nighttime oxidation of GEM has been determined based on field measurements. Our analysis further indicates that OH has a much more important role in GEM oxidation than commonly considered. A lower-limit rate constant for the OH–RGM reaction is provided.


2016 ◽  
Author(s):  
Z. Ye ◽  
H. Mao ◽  
C.-J. Lin ◽  
S. Y. Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (marine), Thompson Farm (coastal, rural), and Pack Monadnock (inland, rural, elevated). The chemical mechanism improved model's ability to simulate the formation of gaseous oxidized mercury (GOM) at the study sites. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2 initiated GEM oxidation was significant (~ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL), Br and BrO were dominant GEM oxidants contributing ~ 70 % of the total GOM production during mid-day, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day. Following the production of HgBr from GEM + Br, HgBr was oxidized by BrO, HO2, OH, ClO, and IO to form Hg(II) brominated GOM species. However, under atmospheric conditions, the prevalent GEM oxidants in the MBL could be Br / BrO or O3 / OH depending on Br and BrO mixing ratios. Relative humidity and products of the CH3O2 + BrO reaction possibly affected significantly the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could be potentially important in the production of GOM as well as Br and BrO at the marine site.


2019 ◽  
Vol 12 (2) ◽  
pp. 1207-1217 ◽  
Author(s):  
Matthieu B. Miller ◽  
Sarrah M. Dunham-Cheatham ◽  
Mae Sexauer Gustin ◽  
Grant C. Edwards

Abstract. Reactive mercury (RM), the sum of both gaseous oxidized Hg and particulate bound Hg, is an important component of the global atmospheric mercury cycle, but measurement currently depends on uncalibrated operationally defined methods with large uncertainty and demonstrated interferences and artifacts. Cation exchange membranes (CEMs) provide a promising alternative methodology for quantification of RM, but method validation and improvements are ongoing. For the CEM material to be reliable, uptake of gaseous elemental mercury (GEM) must be negligible under all conditions and RM compounds must be captured and retained with high efficiency. In this study, the performance of CEM material under exposure to high concentrations of GEM (1.43×106 to 1.85×106 pg m−3) and reactive gaseous mercury bromide (HgBr2 ∼5000 pg m−3) was explored using a custom-built mercury vapor permeation system. Quantification of total permeated Hg was measured via pyrolysis at 600 ∘C and detection using a Tekran® 2537A. Permeation tests were conducted over 24 to 72 h in clean laboratory air, with absolute humidity levels ranging from 0.1 to 10 g m−3 water vapor. GEM uptake by the CEM material averaged no more than 0.004 % of total exposure for all test conditions, which equates to a non-detectable GEM artifact for typical ambient air sample concentrations. Recovery of HgBr2 on CEM filters was on average 127 % compared to calculated total permeated HgBr2 based on the downstream Tekran® 2537A data. The low HgBr2 breakthrough on the downstream CEMs (< 1 %) suggests that the elevated recoveries are more likely related to suboptimal pyrolyzer conditions or inefficient collection on the Tekran® 2537A gold traps.


Sign in / Sign up

Export Citation Format

Share Document