scholarly journals Natural and anthropogenic atmospheric mercury in the European Arctic: a speciation study

2010 ◽  
Vol 10 (11) ◽  
pp. 27255-27281
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
L. R. Hole ◽  
...  

Abstract. It is agreed that gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Event (AMDE). RGM is associated with aerosols (PHg) provided that there are sufficient aerosols available for the conversion from RGM to PHg to occur. This study reports the longest time series of GEM, RGM and PHg concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78°54' N, 11°53' E). The average concentrations of the complete dataset were 1.62±0.3 ng m−3, 8±13 pgm−3 and 8±25 pgm−3 for GEM, RGM and PHg, respectively. The study revealed a clear seasonal distribution of GEM, RGM and PHg previously undiscovered. For the complete dataset the atmospheric mercury distribution was 99% GEM, whereas RGM and PHg constituted <1%. Increased PHg concentration occurred exclusively from March through April, and constituted on average 75% of the reactive mercury species in the respective period. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Surprisingly, RGM was not solely formed during the spring AMDE season. Environment Canada's Global/Regional Atmospheric Heavy Metal model (GRAHM) suggested that in situ oxidation of GEM by ozone may be producing the increased RGM concentrations from March through August. Most likely, in situ oxidation of GEM by BrO produced the observed RGM from March through August. The AMDEs occurred from late March until mid June and were thought to be of non-local origin, with GEM being transported to the study site by a wide variety of air masses. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations.

2011 ◽  
Vol 11 (13) ◽  
pp. 6273-6284 ◽  
Author(s):  
A. O. Steen ◽  
T. Berg ◽  
A. P. Dastoor ◽  
D. A. Durnford ◽  
O. Engelsen ◽  
...  

Abstract. Gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Events (AMDE). This study reports the longest time series of GEM, RGM and particle-bound mercury (PHg) concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78° 54′ N, 11° 53′ E). The average concentrations of the complete dataset were 1.6 ± 0.3 ng m−3, 8 ± 13 pg m−3 and 8 ± 25 pg m−3 for GEM, RGM and PHg, respectively. For the complete dataset the atmospheric mercury distribution was 99 % GEM, whereas RGM and PHg constituted <1 %. The study revealed a seasonal distribution of GEM, RGM and PHg previously undiscovered in the Arctic. Increased concentrations of RGM were observed during the insolation period from March through August, while increased PHg concentrations occurred almost exclusively during the spring AMDE period in March and April. The elevated RGM concentrations suggest that atmospheric RGM deposition also occurs during the polar summer. RGM was suggested as the precursor for the PHg existence, but long range transportation of PHg has to be taken into consideration. Still there remain gaps in the knowledge of how RGM and PHg are related in the environment. RGM and PHg accounted for on average about 10 % of the depleted GEM during AMDEs. Although speculative, the fairly low RGM and PHg concentrations supported by the predominance of PHg with respect to RGM and no clear meteorological regime associated with these AMDEs would all suggest the events to be of non-local origin. With some exceptions, no clear meteorological regime was associated with the GEM, RGM and PHg concentrations throughout the year.


2008 ◽  
Vol 8 (23) ◽  
pp. 7165-7180 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous depletion of GEM and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10−13 and kHg+BrO≤1×10−15 cm3 molecule−1 s−1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous-phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)22−. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl42−) was much higher than in dilute aqueous droplets (mostly Hg(SO3)22−), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2014 ◽  
Vol 14 (8) ◽  
pp. 11041-11074 ◽  
Author(s):  
H. Zhang ◽  
X. W. Fu ◽  
C.-J. Lin ◽  
X. Wang ◽  
X. B. Feng

Abstract. This study reports the speciated concentration and the potential sources of atmospheric mercury measured at the Shangri-La Atmosphere Watch Regional Station (SAWRS), a pristine high-altitude site (3580 m a.s.l.) in Tibetan Plateau, China. The total gaseous mercury (TGM, defined as the sum of Gaseous Elemental Mercury, GEM, and gaseous oxidized mercury, GOM), GOM and particulate-bound mercury (PBM) were monitored from November 2009 to November 2010 to investigate the characteristics and atmospheric transport of mercury influenced by the Indian summer monsoon (ISM) and westerlies. The mean concentrations of TGM, PBM and GOM were 2.55 ± 0.73 ng m−3, 37.78 ± 31.35 pg m−3 and 7.90 ± 7.89 ng m−3. A notable seasonal pattern was observed with higher TGM concentrations in the beginning and end of the ISM. High TGM concentrations were associated with the transport of dry air that carried regional anthropogenic emissions from both domestic and foreign sources. The low PBM and GOM level was attributed to the deposition and wet scavenging during the ISM period. Backward trajectory analysis of air masses associated with TGM levels suggested that both the ISM and westerlies can carry Hg emitted in Burma, Bengal bay and north India to the SAWRS.


2008 ◽  
Vol 8 (4) ◽  
pp. 13197-13232 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous destruction of Hg and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10-13 and kHg+BrO≤1×10-15cm3 mol-1 s-1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)2-2. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl2) was much higher than in dilute aqueous droplets (mostly Hg(SO3)2-2), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2021 ◽  
Author(s):  
Minish Panchall

A modeling study was conducted on the transformation and deposition patterns of atmospheric mercury in the Canadian Arctic. One Dimensional (1-D) local scale model was used to simulate the episodic depletions of gaseous elemental mercury (GEM) after polar sunrise at Alert, Canada. The model was developed by starting with existing meteorological model (LCM-Local Climate Model) which is coupled with Canadian Aerosol Module (CAM) and then adding modules specific to atmospheric mercury chemistry. The model is able to simulate local scale transport of mercury over the entire depth of the troposphere with a basic time step of 20 min. and incorporates current knowledge of transformation reactions of atmospheric mercury species. Three mercury species Hg(O), Hg(II) and Hg(p) were considered. The developed model was applied to a portion of the Canadian Arctic region, Alert, for the month of April 2002. The model was then evaluated by comparing model estimates of mercury species concentrations with the measurement data collected in the Canadian Arctic by Meteorological Services of Canada, Downsview, Ontario. The results from this modeling study agree reasonably well with some underestimation caused by lower conversion of gaseous elemental mercury (GEM) into reactive gaseous mercury (RGM) and subsequent conversion to total particulate mercury (TPM). A sensitivity analysis was also conducted to examine the depositions of mercury species in response to changes in ozone and soot concentrations.


2016 ◽  
Vol 16 (21) ◽  
pp. 13379-13387 ◽  
Author(s):  
Ingvar Wängberg ◽  
Michelle G. Nerentorp Mastromonaco ◽  
John Munthe ◽  
Katarina Gårdfeldt

Abstract. Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.


2017 ◽  
Vol 17 (1) ◽  
pp. 465-483 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two-photon laser-induced fluorescence (2P-LIF) instrument for the in situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 h but on one occasion extending to ∼ 24 h, were conducted, allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with cold vapor atomic fluorescence spectroscopic (CVAFS) analysis. At the highest temporal resolution, ∼ 5 min samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total mercury (TM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl-coated annular denuders were deployed and analyzed using thermal dissociation coupled with single-photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. The limitations of the RAMIX experiment and potential improvements that should be implemented in any future mercury instrument intercomparison are discussed. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury from the RAMIX results.


2016 ◽  
Author(s):  
Anthony J. Hynes ◽  
Stephanie Everhart ◽  
Dieter Bauer ◽  
James Remeika ◽  
Cheryl Tatum Ernest

Abstract. The University of Miami (UM) deployed a sequential two photon laser-induced fluorescence (2P-LIF) instrument for the in-situ measurement of gaseous elemental mercury, Hg(0), during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX) campaign. A number of extended sampling experiments, typically lasting 6–8 hours but on one occasion extending to ~ 24 hours, were conducted allowing the 2P-LIF measurements of Hg(0) concentrations to be compared with two independently operated instruments using gold amalgamation sampling coupled with Cold Vapor Atomic Fluorescence Spectroscopic (CVAFS) analysis. At the highest temporal resolution, ~ 5 minute samples, the three instruments measured concentrations that agreed to within 10–25 %. Measurements of total gaseous mercury (TGM) were made by using pyrolysis to convert total oxidized mercury (TOM) to Hg(0). TOM was then obtained by difference. Variability in the ambient Hg(0) concentration limited our sensitivity for measurement of ambient TOM using this approach. In addition, manually sampled KCl coated annular denuders were deployed and analyzed using thermal dissociation coupled with single photon LIF detection of Hg(0). The TOM measurements obtained were normally consistent with KCl denuder measurements obtained with two Tekran speciation systems and with the manual KCl denuder measurements but with very large uncertainty. They were typically lower than measurements reported by the University of Washington (UW) Detector for Oxidized Hg Species (DOHGS) system. The ability of the 2P-LIF pyrolysis system to measure TGM was demonstrated during one of the manifold HgBr2 spikes but the results did not agree well with those reported by the DOHGS system. We suggest that instrumental artifacts make a substantial contribution to the discrepancies in the reported measurements over the course of the RAMIX campaign. This suggests that caution should be used in drawing significant implications for the atmospheric cycling of mercury.


2021 ◽  
Author(s):  
Hui Zhang ◽  
Xuewu Fu ◽  
Ben Yu ◽  
Baoxin Li ◽  
Peng Liu ◽  
...  

Abstract. To understand the ambient levels and sources of atmospheric mercury (Hg) in the Tibetan Plateau, a full-year continuous measurement of speciated atmospheric mercury was conducted at Waliguan (WLG) Baseline Observatory (3816 m a.s.l.) from May 2012 to April 2013. Mean concentrations (±1 SD) of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate bound mercury (PBM) during the whole study period were 1.90 ± 0.80 ng m−3, 12.0 ± 10.6 pg m−3 and 65.4 ± 63.2 pg m−3, respectively. Seasonal variations of GEM were very small, while those of PBM were quite large with mean values being four times higher in cold (102.3 ± 66.7 pg m−3) than warm (22.8 ± 14.6 pg m−3) season. Anthropogenic emissions to the east of Tibetan Plateau contributed significantly to GEM pollution at WLG, while dust particles originated from desert and Gobi regions in Xinjiang province and Tibetan Plateau to the west of WLG were responsible to PBM pollution at WLG. This finding is also supported by the significant positive correlation between daily PBM concentration and daily cumulative absorbing aerosol index (AAI) encountered by air masses transported during the preceding two days.


2014 ◽  
Vol 14 (10) ◽  
pp. 14439-14470
Author(s):  
H. Angot ◽  
M. Barret ◽  
O. Magand ◽  
M. Ramonet ◽  
A. Dommergue

Abstract. Scarcity of mercury species records in the Southern Hemisphere is a critical weak point for the development of appropriate modeling and regulation scenarios. Under the framework of the "Global Mercury Observation System" (GMOS) project, a monitoring station has been set up on Amsterdam Island (37°48' S, 77°34' E) in the remote southern Indian Ocean. For the first time in the Southern Hemisphere, a 2 year record of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) is presented. GEM concentrations were remarkably steady (1.03 ± 0.08 pg m−3) while RGM and PBM concentrations were very low and exhibited a strong variability (mean: 0.34 pg m−3 [range: 0.28–4.07 pg m−3] and mean: 0.67 pg m−3 [range: 0.28–12.67 pg m−3], respectively). Despite the remoteness of the island, wind sector analysis, air mass back trajectories and the observation of radonic storms highlighted a long-range contribution from the southern African continent to the GEM and PBM budgets in winter during the biomass burning season. Lowest concentrations of GEM were associated with southerly polar and marine air masses from the remote southern Indian Ocean. This unique dataset provides new baseline GEM concentrations in the Southern Hemisphere mid-latitudes for further modeling studies, while mercury speciation along with upcoming wet deposition data will help improving our understanding of mercury cycle in the marine boundary layer.


Sign in / Sign up

Export Citation Format

Share Document