scholarly journals Supplementary material to "Assessment of co-benefits of black carbon emission reduction measures in Southeast Asia: Part 1 emission inventory and simulation for the base year 2007"

Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard
2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. This research assessed the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents Part 1 of the research with details on the emission inventory (EI) results and the WRF/CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand and Cambodia and used for the model input. WRF/CHIMERE simulated PM10, PM2.5 and BC over the SEA domain (0.25º x 0.25º) of the year 2007 and the results were evaluated against the available monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at 8 international airport stations in 5 SEA countries and showed a satisfactory performance. WRF/CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three SEA large cities, i.e. Bangkok, Kuala Lumpur and Surabaya for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in the Asian Developing Countries (AIRPET) project for 4 cities (i.e. Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a sub-urban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5/PM10 ratios estimated for four AIRPET sites ranged between 0.47–0.59, lower than observed values of 0.6–0.83. Better agreement was found for BC/PM2.5 ratios with the modeled values of 0.05–0.33 as compared to the observation values of 0.05–0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD using the internal mixing assumption. The model AOD results were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5–12 % of the total AOD, which was in the same ranges reported by other studies for places with intensive emissions. The Part 1 results (this study) is used in Part 2 (Permadi et al., 2017a) which calculates the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in number of premature deaths and climate forcing mitigation in SEA in 2030.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meng Wang ◽  
Lei Feng ◽  
Pengfei Zhang ◽  
Gaohang Cao ◽  
Hanbin Liu ◽  
...  

Xinjiang production and Construction Corps (XPCC) is an important provincial administration in China and vigorously promotes the construction of industrialization. However, there has been little research on its emissions. This study first established the 1998-2018 XPCC subsectoral carbon emission inventory based on the Intergovernmental Panel on Climate Change (IPCC) carbon emission inventory method and adopted the logarithmic mean Divisia indexmethod (LMDI) model to analyze the driving factors. The results revealed that from 1998 to 2018, the total carbon emissions in the XPCC increased from 6.11 Mt CO2 in 1998 to 115.71 Mt CO2 in 2018. For the energy structure, raw coal, coke and industrial processes were the main contributors to carbon emissions. For industrial structure, the main emission sectors were the production and supply of electric power, steam and hot water, petroleum processing and coking, raw chemical materials and chemical products, and smelting and pressing of nonferrous metals. In addition, the economic effect was the leading factor promoting the growth of the corps carbon emissions, followed by technical and population effects. The energy structure effect was the only factor yielding a low emission reduction degree. This research provides policy recommendations for the XPCC to formulate effective carbon emission reduction measures, which is conducive to the construction of a low-carbon society. Moreover, it is of guiding significance for the development of carbon emission reduction actions for the enterprises under the corps and provides a reference value for other provincial regions.


2021 ◽  
Vol 48 (8) ◽  
Author(s):  
Mengwei Jia ◽  
Nikolaos Evangeliou ◽  
Sabine Eckhardt ◽  
Xin Huang ◽  
Jian Gao ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 2725-2747 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. This is part of a research study addressing the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents details of emission inventory (EI) results and WRF–CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand, and Cambodia and used for the model input. WRF–CHIMERE-simulated 2007 PM10, PM2.5, and BC over the SEA domain (0.25° × 0.25°) and the results were evaluated against the available meteorology and air quality monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at eight international airport stations in five SEA countries and showed a satisfactory performance. WRF–CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while the BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three large SEA cities, i.e., Bangkok, Kuala Lumpur, and Surabaya, for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in Asian Developing Countries (AIRPET) project for four cities (i.e., Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a suburban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5∕PM10 ratios estimated for four AIRPET sites ranged between 0.47 and 0.59, lower than observed values of 0.6–0.83. Better agreement was found for BC∕PM2.5 ratios with the modeled values of 0.05–0.33 as compared to the observation values of 0.05–0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD up to the top of the domain at 500 hPa (∼ 5500 m), which did not include the free-tropospheric long-range transport of the pollution. The model AOD results calculated using the internal mixing assumption were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5–12 % of the total AOD, which was in the same range reported by other studies for places with intensive emissions. The results of this paper are used to calculate the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in the number of premature deaths, and climate forcing mitigation in SEA in 2030 (Permadi et al., 2017a).


2019 ◽  
Vol 1343 ◽  
pp. 012077 ◽  
Author(s):  
Gabriel Happle ◽  
Zhongming Shi ◽  
Shanshan Hsieh ◽  
Bolie Ong ◽  
Jimeno A Fonseca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document