Supplementary material to "Inverse modelling of the Chernobyl source term using atmospheric concentration and deposition measurements"

Author(s):  
Nikolaos Evangeliou ◽  
Thomas Hamburger ◽  
Anne Cozic ◽  
Yves Balkanski ◽  
Andreas Stohl
2017 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Thomas Hamburger ◽  
Anne Cozic ◽  
Yves Balkanski ◽  
Andreas Stohl

Abstract. The present paper describes the results of an inverse modelling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the real magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modelling tools were further developed, inverse modelling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high quality measurements, that are essential for inverse modelling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations, but also deposition measurements from the most recent public dataset. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to give such kind of measurements into anyone interested. As regards to our inverse modelling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, in the same order with previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration and deposition observations over Europe. The results were of the present inversion were confirmed using an independent Eulerial model, for which deposition patterns were also improved when using the estimated posterior releases. Although the independent model tends to underestimate deposition in countries that are not in the main direction of the plume, it reproduces country levels of deposition very efficiently. The results were also tested for robustness against different set-ups of the inversion through sensitivity runs. The source term data from this study are made publically available.


2007 ◽  
Vol 7 (6) ◽  
pp. 1549-1564 ◽  
Author(s):  
X. Davoine ◽  
M. Bocquet

Abstract. The reconstruction of the Chernobyl accident source term has been previously carried out using core inventories, but also back and forth confrontations between model simulations and activity concentration or deposited activity measurements. The approach presented in this paper is based on inverse modelling techniques. It relies both on the activity concentration measurements and on the adjoint of a chemistry-transport model. The location of the release is assumed to be known, and one is looking for a source term available for long-range transport that depends both on time and altitude. The method relies on the maximum entropy on the mean principle and exploits source positivity. The inversion results are mainly sensitive to two tuning parameters, a mass scale and the scale of the prior errors in the inversion. To overcome this hardship, we resort to the statistical L-curve method to estimate balanced values for these two parameters. Once this is done, many of the retrieved features of the source are robust within a reasonable range of parameter values. Our results favour the acknowledged three-step scenario, with a strong initial release (26 to 27 April), followed by a weak emission period of four days (28 April–1 May) and again a release, longer but less intense than the initial one (2 May–6 May). The retrieved quantities of iodine-131, caesium-134 and caesium-137 that have been released are in good agreement with the latest reported estimations. Yet, a stronger apportionment of the total released activity is ascribed to the first period and less to the third one. Finer chronological details are obtained, such as a sequence of eruptive episodes in the first two days, likely related to the modulation of the boundary layer diurnal cycle. In addition, the first two-day release surges are found to have effectively reached an altitude up to the top of the domain (5000 m).


2007 ◽  
Vol 7 (1) ◽  
pp. 1-43 ◽  
Author(s):  
X. Davoine ◽  
M. Bocquet

Abstract. The reconstruction of the Chernobyl accident source term has been previously carried out using core inventories, but also back and forth confrontations between model simulations and activity concentration or deposited activity measurements. The approach presented in this paper is based on inverse modelling techniques. It relies both on the activity concentration measurements and on the adjoint of a chemistry-transport model. The location of the release is assumed to be known, and one is looking for a source term available for long-range transport that depends both on time and altitude. The method relies on the maximum entropy on the mean principle and exploits source positivity. The inversion results are mainly sensitive to two tuning parameters, a mass scale and the scale of the prior errors in the inversion. To overcome this hardship, we resort to the statistical L-curve method to estimate balanced values for these two parameters. Once this is done, many of the retrieved features of the source are robust within a reasonable range of parameter values. Our results favour the acknowledged three-step scenario, with a strong initial release (26 to 27 April), followed by a weak emission period of four days (28 April–1 May) and again a release, longer but less intense than the initial one (2 May–6 May). The retrieved quantities of iodine-131, caesium-134 and caesium-137 that have been released are in good agreement with the latest reported estimations. Yet, a stronger apportionment of the total released activity is ascribed to the first period and less to the third one. Finer chronological details are obtained, such as a sequence of eruptive episodes in the first two days, likely related to the modulation of the boundary layer diurnal cycle. In addition, the first two-day release surges are found to have effectively reached an altitude up to the top of the domain (5000 m).


2018 ◽  
Author(s):  
Basil Denzler ◽  
Christian Bogdal ◽  
Cyrill Kern ◽  
Anna Tobler ◽  
Jing Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document